By means of in situ diffuse reflectance FTIR, the IR spectra of 6 coals with different ranks were obtained from room temperature to 230 ℃. A new curve fitting method was used to recognize the different hydrogen ...By means of in situ diffuse reflectance FTIR, the IR spectra of 6 coals with different ranks were obtained from room temperature to 230 ℃. A new curve fitting method was used to recognize the different hydrogen bonds in the coals, and the influence of coal ranks on the distribution of hydrogen bonds(HBs) in the coals and their thermal stability were discussed. The results show that there is another new HB(around 2514 cm -1 ) between the -SH in mercaptans or thiophenols and the nitrogen in the pyridine like compounds in the coals, and the evidence for that was provided. The controversial band of the HB between hydroxyl and the nitrogen of the pyridine like compounds was determined in the range of 3028-2984 cm -1 , and the result is consistent with but more specific than that of Painter et al .. It was found that the stability of different HBs in the coals is influenced by both coal rank and temperature. For some HBs, the higher the coal rank, the higher the stability of them. Within the temperature range of our research, the stability of the HB between the hydroxyl and the π bond increases to some extent for some coals at temperatures higher than 110 or 140 ℃.展开更多
A series of Ni/AlMCM-41 catalysts with different nickel contents was prepared via the incipient wetness impregnation method. The effects of the nickel content on the structure, acidity and metal function of the cataly...A series of Ni/AlMCM-41 catalysts with different nickel contents was prepared via the incipient wetness impregnation method. The effects of the nickel content on the structure, acidity and metal function of the catalysts were studied by using different techniques. In the test of n-dodecane hydroconversion, it was found that the metal and acid functions were well balanced over a 2.0%Ni(mass fraction)/AlMCM-41 catalyst, which gave the maximal isomerization selectivity and a homolytic cleavage products.展开更多
The Debye equation with slit-smeared small angle x-ray scattering(SAXS) data is extended form an ideal two-phase system to a pseudo two-phase system with the presence of the interface layer,and a simple accurate solut...The Debye equation with slit-smeared small angle x-ray scattering(SAXS) data is extended form an ideal two-phase system to a pseudo two-phase system with the presence of the interface layer,and a simple accurate solution is proposed to determine the average thickness of the interface layer in porous materials.This method is tested by experimental SAXS data,which were measured at 25℃,of organo-modified mesoporous silica prepared by condensation of tetraethoxysiland(TEOS) and methyltriethoxysilane(MTES) using non-ionic neutral surfactant as template under neutral condition.展开更多
Three reactions involved in dimethyl ether (DME) synthesis from COhydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gasshift reaction (WGSR) are studied by thermodynamic c...Three reactions involved in dimethyl ether (DME) synthesis from COhydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gasshift reaction (WGSR) are studied by thermodynamic calculation. For demonstrating this process indetail, three models, MSR, MSR+MDR, MSR+MDR+WGSR, are used. Their basic characteristics can beobtained by varying widely the ratios of H_2 to CO in the feed (no CO_2). Through thermodynamicanalysis a chemical synergic effect obviously exists in the second and third models. By comparisonbetween two models it is found that WGSR plays a special role in dimethyl ether synthesis. It ispossible for the two models to shift one to the other by regulating CO_2 concentration in feed. ForModel 2, the selectivity for DME in oxygenates (DME+methanol) does not change with the ratio of H_2to CO.展开更多
The adsorption of methanol in the acid sites of zeolites has attracted a great deal of attention because of its relevance to the industrial methanol to gasoline conversion process. In this work, the B3LYP hybrid densi...The adsorption of methanol in the acid sites of zeolites has attracted a great deal of attention because of its relevance to the industrial methanol to gasoline conversion process. In this work, the B3LYP hybrid density functional method was used to investigate the adsorption behavior of methanol on Bronsted acid sites in B, Al, Ga and Fe isomorphously substituted ZSM-5 zeolites. The optimized structures reveal a physisorbed methanol interacting with the zeolite framework through two hydrogen bonds. The order of the computed adsorption energy correlates with the acid strength of the isomorphously substituted ZSM-5: B-ZSM-5《Fe-ZSM-5<Ga-ZSM-5<Al-ZSM-5. The adsorption difference between methanol and ammonia is compared.展开更多
Coprecipitation supercritical fluid drying technology has been employed to synthesize calcia-stabilized zirconia ultrafine powder with low-cost inorganic salts as the starting materials. The sintering behaviors of the...Coprecipitation supercritical fluid drying technology has been employed to synthesize calcia-stabilized zirconia ultrafine powder with low-cost inorganic salts as the starting materials. The sintering behaviors of these powders were also investigated. The results showed that supercritical fluid drying could effectively alleviate the hard agglomeration of grains during the gel drying process, and the morphology of the powder retained the network texture of the original gel. The resulting particles were characterized by small particle size (5-20 nm), better monodispersity and high surface area, which gave rise to high activity and sinterability. Consequently, these powders could readily be compacted into the desired shape and their densification could be carried out in shorter time and at lower temperatures. For instance, nanometer-sized powder calcined at 600癈 for 2 h could be cold-pressed into a green body and sintered at 1100?for 0.5 h to attain a dense body with bulk density of 5.9718 g/cm3 and specific pore volume of 0.0008 cm3/g.展开更多
Monte Carlo method was applied to simulate the oscillatory behavior during partial oxidation of methane under non-isothermal condition. The simulation was performed to examine the influences of heat transfer constant ...Monte Carlo method was applied to simulate the oscillatory behavior during partial oxidation of methane under non-isothermal condition. The simulation was performed to examine the influences of heat transfer constant and particle size on the kinetic oscillation. The oscillatory period and amplitude were observed to increase with the increase of heat transfer constant. The increase of catalyst particle size was found to result in short oscillatory period and more or less regular oscillations combined with the formation of oxide down to L = 100.展开更多
A small-angle x-ray scattering(SAXS)technique using synchrotron radiation as the x-ray source has been employed to characterize the microstructure of mesoporous silica prepared by one-pot template-directed synthesis m...A small-angle x-ray scattering(SAXS)technique using synchrotron radiation as the x-ray source has been employed to characterize the microstructure of mesoporous silica prepared by one-pot template-directed synthesis methodology.The scattering of pure silica agreed with Porod’s law.the scattering of organomodified mesoporous silica showed a negative deviation from Porod’s law,suggesting that an interfacial layer exists between the pores and silica matrix.It was the organic groups comprising the interface,as shown by ^29Si cross-polarization magic-angle spinning nuclear magnetic resonance imaging (^29Si cp MAS/NMR) and Fourier transform infrared spectroscopy(FTIR),that caused this negative deviation of SAXS intensity from Porod’s law,and the average thichness of the interfacial layer could be deduced from this negative deviation.Copyright 2001 john Wiley and Sons,Ltd.展开更多
Small angle X-ray scattering experiments have been performed to study the microstructure of messoporous silica meterials prepared by condensation of tetraethylorthosilicate using nonionic alkylpolyethyleneoxide(AEO9) ...Small angle X-ray scattering experiments have been performed to study the microstructure of messoporous silica meterials prepared by condensation of tetraethylorthosilicate using nonionic alkylpolyethyleneoxide(AEO9) and ionic cetyltrimethylammonium bromide (CTAB) surfactant as templates.It is the pores within the nanometre range that produce the main cattering.The scattering of the pure silica systems obey Porod’s law.This may be because the templates produce some additional scattering background and then make the scattering of pores distorted.The results show that the full removal of templates from the pores of the materials by Soxhlet extraction is very easy for AEO9,but it is difficult for CTAB.The positive deviation correction is also perfromed.展开更多
Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipita- tion using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis ...Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipita- tion using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis spectrum. UV-Vis spectra showed that ZnS nanocrystals exhibited strong quantum-confined effect with a blue shift in the band gap of light absorbance. The photocatalytic activity of these nanocrystals was also investigated for the liquid phase photocatalytic degradation of Basic Violet 5BN (BV5) dye under UV irradiation. It was found that the ZnS nanocrystals had good catalytic activity for photodegradation of BV5.展开更多
基金Supported by the National Natural Science Foundation of China(No.2 990 6 0 12)
文摘By means of in situ diffuse reflectance FTIR, the IR spectra of 6 coals with different ranks were obtained from room temperature to 230 ℃. A new curve fitting method was used to recognize the different hydrogen bonds in the coals, and the influence of coal ranks on the distribution of hydrogen bonds(HBs) in the coals and their thermal stability were discussed. The results show that there is another new HB(around 2514 cm -1 ) between the -SH in mercaptans or thiophenols and the nitrogen in the pyridine like compounds in the coals, and the evidence for that was provided. The controversial band of the HB between hydroxyl and the nitrogen of the pyridine like compounds was determined in the range of 3028-2984 cm -1 , and the result is consistent with but more specific than that of Painter et al .. It was found that the stability of different HBs in the coals is influenced by both coal rank and temperature. For some HBs, the higher the coal rank, the higher the stability of them. Within the temperature range of our research, the stability of the HB between the hydroxyl and the π bond increases to some extent for some coals at temperatures higher than 110 or 140 ℃.
基金the Funds for the National Key Fundamental Research and Developm ent Projects of China (No.G19990 2 2 4 0 2 )
文摘A series of Ni/AlMCM-41 catalysts with different nickel contents was prepared via the incipient wetness impregnation method. The effects of the nickel content on the structure, acidity and metal function of the catalysts were studied by using different techniques. In the test of n-dodecane hydroconversion, it was found that the metal and acid functions were well balanced over a 2.0%Ni(mass fraction)/AlMCM-41 catalyst, which gave the maximal isomerization selectivity and a homolytic cleavage products.
文摘The Debye equation with slit-smeared small angle x-ray scattering(SAXS) data is extended form an ideal two-phase system to a pseudo two-phase system with the presence of the interface layer,and a simple accurate solution is proposed to determine the average thickness of the interface layer in porous materials.This method is tested by experimental SAXS data,which were measured at 25℃,of organo-modified mesoporous silica prepared by condensation of tetraethoxysiland(TEOS) and methyltriethoxysilane(MTES) using non-ionic neutral surfactant as template under neutral condition.
基金This work is supported by the National High Technology Research and Development Program of China (Grant: 2002AA529070).
文摘Three reactions involved in dimethyl ether (DME) synthesis from COhydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gasshift reaction (WGSR) are studied by thermodynamic calculation. For demonstrating this process indetail, three models, MSR, MSR+MDR, MSR+MDR+WGSR, are used. Their basic characteristics can beobtained by varying widely the ratios of H_2 to CO in the feed (no CO_2). Through thermodynamicanalysis a chemical synergic effect obviously exists in the second and third models. By comparisonbetween two models it is found that WGSR plays a special role in dimethyl ether synthesis. It ispossible for the two models to shift one to the other by regulating CO_2 concentration in feed. ForModel 2, the selectivity for DME in oxygenates (DME+methanol) does not change with the ratio of H_2to CO.
基金This work is supported by the National Natural Science Foundation of China(No.20073057)
文摘The adsorption of methanol in the acid sites of zeolites has attracted a great deal of attention because of its relevance to the industrial methanol to gasoline conversion process. In this work, the B3LYP hybrid density functional method was used to investigate the adsorption behavior of methanol on Bronsted acid sites in B, Al, Ga and Fe isomorphously substituted ZSM-5 zeolites. The optimized structures reveal a physisorbed methanol interacting with the zeolite framework through two hydrogen bonds. The order of the computed adsorption energy correlates with the acid strength of the isomorphously substituted ZSM-5: B-ZSM-5《Fe-ZSM-5<Ga-ZSM-5<Al-ZSM-5. The adsorption difference between methanol and ammonia is compared.
基金the National Natural Science Foundation of China under grant No.20133040
文摘Coprecipitation supercritical fluid drying technology has been employed to synthesize calcia-stabilized zirconia ultrafine powder with low-cost inorganic salts as the starting materials. The sintering behaviors of these powders were also investigated. The results showed that supercritical fluid drying could effectively alleviate the hard agglomeration of grains during the gel drying process, and the morphology of the powder retained the network texture of the original gel. The resulting particles were characterized by small particle size (5-20 nm), better monodispersity and high surface area, which gave rise to high activity and sinterability. Consequently, these powders could readily be compacted into the desired shape and their densification could be carried out in shorter time and at lower temperatures. For instance, nanometer-sized powder calcined at 600癈 for 2 h could be cold-pressed into a green body and sintered at 1100?for 0.5 h to attain a dense body with bulk density of 5.9718 g/cm3 and specific pore volume of 0.0008 cm3/g.
文摘Monte Carlo method was applied to simulate the oscillatory behavior during partial oxidation of methane under non-isothermal condition. The simulation was performed to examine the influences of heat transfer constant and particle size on the kinetic oscillation. The oscillatory period and amplitude were observed to increase with the increase of heat transfer constant. The increase of catalyst particle size was found to result in short oscillatory period and more or less regular oscillations combined with the formation of oxide down to L = 100.
文摘A small-angle x-ray scattering(SAXS)technique using synchrotron radiation as the x-ray source has been employed to characterize the microstructure of mesoporous silica prepared by one-pot template-directed synthesis methodology.The scattering of pure silica agreed with Porod’s law.the scattering of organomodified mesoporous silica showed a negative deviation from Porod’s law,suggesting that an interfacial layer exists between the pores and silica matrix.It was the organic groups comprising the interface,as shown by ^29Si cross-polarization magic-angle spinning nuclear magnetic resonance imaging (^29Si cp MAS/NMR) and Fourier transform infrared spectroscopy(FTIR),that caused this negative deviation of SAXS intensity from Porod’s law,and the average thichness of the interfacial layer could be deduced from this negative deviation.Copyright 2001 john Wiley and Sons,Ltd.
文摘Small angle X-ray scattering experiments have been performed to study the microstructure of messoporous silica meterials prepared by condensation of tetraethylorthosilicate using nonionic alkylpolyethyleneoxide(AEO9) and ionic cetyltrimethylammonium bromide (CTAB) surfactant as templates.It is the pores within the nanometre range that produce the main cattering.The scattering of the pure silica systems obey Porod’s law.This may be because the templates produce some additional scattering background and then make the scattering of pores distorted.The results show that the full removal of templates from the pores of the materials by Soxhlet extraction is very easy for AEO9,but it is difficult for CTAB.The positive deviation correction is also perfromed.
文摘Hydrophilic ZnS nanocrystals with narrow size distribution were synthesized via homogeneous precipita- tion using EDTA as stabilizer. The as-synthesized products were characterized with XRD, TEM, HRTEM and UV-Vis spectrum. UV-Vis spectra showed that ZnS nanocrystals exhibited strong quantum-confined effect with a blue shift in the band gap of light absorbance. The photocatalytic activity of these nanocrystals was also investigated for the liquid phase photocatalytic degradation of Basic Violet 5BN (BV5) dye under UV irradiation. It was found that the ZnS nanocrystals had good catalytic activity for photodegradation of BV5.