期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of quenching speed and Joule heating on the magnetic properties of Nd_9Fe_(86)B_5 ribbons 被引量:1
1
作者 ANKang HUJifan +5 位作者 WANGDongling QINHongwei SUNGuangfei CHENJufang YUXiaojun LIBo 《Rare Metals》 SCIE EI CAS CSCD 2005年第2期157-160,共4页
The influences of quenching speed and current annealing on the magnetic properties of Nd9Fe86B5 ribbons were investigated. There is an optimum quenching speed (v ≈ 15 m/s) for preparing hard magnetic ribbons, where t... The influences of quenching speed and current annealing on the magnetic properties of Nd9Fe86B5 ribbons were investigated. There is an optimum quenching speed (v ≈ 15 m/s) for preparing hard magnetic ribbons, where the remanence of 1.22 T, the intrinsic coercivity of 521 kA?m?1 and the energy products of 150 kJ?m?3 are obtained. After annealing ribbons prepared with v = 20 m/s at a dc current of 0.85 A, the remanence reaches a quite large value of 1.47 T, which attributes to the strong exchange coupling interactions between the fine grains of Nd2Fe14B and α-Fe. 展开更多
关键词 NDFEB melt-spun ribbon dc current annealing exchange coupling
在线阅读 下载PDF
The Tb Doping Effect on the Room Temperature Magnetoresistance in(La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3(x≤0.4)
2
作者 HongweiQIN JifanHU +3 位作者 JuanCHEN HongdongNIU LumingZHU ZhuoWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期350-352,共3页
With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room te... With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature. 展开更多
关键词 MAGNETORESISTANCE (La_(1-x) Tb_x)_(0.67)Sr_(0.33)MnO_3 Curie temperature Metal-insulator temperature
在线阅读 下载PDF
Amorphization and magnetic properties of Fe_(62)Nb_(38) mechanically alloyed powders
3
作者 QINHongwei HUJifan YANGFuming 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期231-234,共4页
The amorphization and magnetic properties of Fe_(62)Nb_(38) mechanicallyalloyed powders were investigated. In the initial mechanical alloying processes, the latticestructure of pure Fe is destroyed due to the cold-wel... The amorphization and magnetic properties of Fe_(62)Nb_(38) mechanicallyalloyed powders were investigated. In the initial mechanical alloying processes, the latticestructure of pure Fe is destroyed due to the cold-welding and fracturing, accompanying the reductionof ferromagnetic properties. The M_S value of Fe_(62)Nb_(38) powders with ball-milling time t = 6 his only 48.1 A·m^2/kg. With prolongating of mechanical alloying processes, a solid stateamorphization reaction (SSAR) takes place and the Fe-Nb ferromagnetic amorphous phase is formed.With the milling time increasing from 6 to 18 h, the saturation magnetization of Fe_(62)Nb_(38)powders increases with enhancement of the proportion of ferromagnetic amorphous phase in milledpowders. The M_S value of the Fe_(62)Nb_(38) amorphous powders is 98 A·m^2/kg, which is very closeto the value estimated from dilute model. However, the Curie temperature of the Fe_(62)Nb_(38)amorphous phase is only 206℃, which is much smaller than that of the pure Fe. This implies that theexchange interaction between Fe atoms in amorphous alloyed Fe_(62)Nb_(38) becomes weak due to theNb dilution. Investigation shows that the variation of magnetic properties of milled powders is oneof important tools for describing the amorphization by mechanical alloying. 展开更多
关键词 metallic materials AMORPHOUS magnetic properties mechanical alloying
在线阅读 下载PDF
Giant magnetoimpedance effect in Fe-Zr-Nb-Cu-B nanocrystalline ribbons
4
作者 ANKang HUJifan +4 位作者 QINHongwei HANTao WANGYizhong YUXiaojun LIBo 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期235-240,共6页
The giant magnetoimpedance effect of the nanocrystalline ribbonFe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) (atom fraction in %) was investigated. There is an optimumannealing temperature (T_A≈ 998 K) for obtaining the larges... The giant magnetoimpedance effect of the nanocrystalline ribbonFe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) (atom fraction in %) was investigated. There is an optimumannealing temperature (T_A≈ 998 K) for obtaining the largest GMI (giant magneto-impedance) effectin the ribbon Fe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11). The ribbon with longer ribbon length has strongerGMI effect, which may be connected with the demagnetization effect of samples. The frequencyf_(max), where the maximum magnetoimpedance GMI(Z)_(max) = [(Z(H) - Z(0))/Z(0)]_(max) occurs, isnear the intersecting frequency f_i of the curves of GMI(R), GMI(X), and GMI(Z) versus frequency.The magnetoreactance GMI(X) decreases monotonically with increasing frequency, which may be due tothe decrease of permeability. In contrast, with the AC (alternating current) frequency increasing,the inagnetore-sistance GMI(R) increases at first, undergoes a peak, and under then drops. Theincrease of the magnetoresistance may result from the enhancement of the skin effect with frequency.The maximum magnetoimpedance value GMI(Z)_(max) under H = 7.2 kA/m is about -56.18% at f= 0.3 MHzfor the nanocrystalline ribbon Fe_(84)Zr_(2.08)Nb_(1.92)Cu_1B_(11) with the annealing temperatureT_A= 998 K and the ribbon length L = 6 cm. 展开更多
关键词 magnetic materials nanocrystalline ribbon giant magnetoimpedance effect PERMEABILITY ANNEALING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部