Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO 2 as catalyst. The anions were added as Na 2SO 4, NaNO ...Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO 2 as catalyst. The anions were added as Na 2SO 4, NaNO 3, NaCl, NaHCO 3, NaH 2PO 4 and Na 3PO 4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na +, were studied. The results revealed that: Cl -, SO 2- 4, NO - 3 and HCO - 3 retarded the rates of DBS degradation to different degrees; PO 3- 4 increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H 2PO - 4 accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site of catalyst; anions added to the solution change the pH value and influence the formation of ·OH radicals and the adsorption of DBS on catalyst.展开更多
Nitrogen contaminant transport, transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat. They were Group A, planting density of 0.0208 plan...Nitrogen contaminant transport, transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat. They were Group A, planting density of 0.0208 plants/cm 2, Group B, 0.1042 plants /cm 2, and Group C, 0.1415 plants/cm 2. The capacity and ratio of nitrogen removal were different on three kinds of conditions of wastewater land treatment. From analysis of wastewater treatment capacity, wastewater concentration and irrigation intensity for Group C were suitable and nitrogen quantity added was 2 times of that for Group B, 2.6 times for Group A while nitrogen residue was only 7.06%. Hence, wastewater irrigation and treatment design with purpose of waste water treatment should select the design with maximum capacity, optimal removal ratio and least residue in soil, which was closely related to crop planting density, crop growth status and also background nitrogen quantity in soil.展开更多
基金TheNationalNaturalScienceFoundationofChina (No .495 710 6 2 )
文摘Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO 2 as catalyst. The anions were added as Na 2SO 4, NaNO 3, NaCl, NaHCO 3, NaH 2PO 4 and Na 3PO 4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na +, were studied. The results revealed that: Cl -, SO 2- 4, NO - 3 and HCO - 3 retarded the rates of DBS degradation to different degrees; PO 3- 4 increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H 2PO - 4 accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site of catalyst; anions added to the solution change the pH value and influence the formation of ·OH radicals and the adsorption of DBS on catalyst.
文摘Nitrogen contaminant transport, transformation and uptake simulation experiments were conducted in green house under three different planting density of winter wheat. They were Group A, planting density of 0.0208 plants/cm 2, Group B, 0.1042 plants /cm 2, and Group C, 0.1415 plants/cm 2. The capacity and ratio of nitrogen removal were different on three kinds of conditions of wastewater land treatment. From analysis of wastewater treatment capacity, wastewater concentration and irrigation intensity for Group C were suitable and nitrogen quantity added was 2 times of that for Group B, 2.6 times for Group A while nitrogen residue was only 7.06%. Hence, wastewater irrigation and treatment design with purpose of waste water treatment should select the design with maximum capacity, optimal removal ratio and least residue in soil, which was closely related to crop planting density, crop growth status and also background nitrogen quantity in soil.