期刊文献+
共找到1,085篇文章
< 1 2 55 >
每页显示 20 50 100
Tailoring the morphology and charge transfer pathways of ultrathin Cd_(0.8)Zn_(0.2)S nanosheets via ionic liquid-modified Ti_(3)C_(2)MXenes towards remarkable photocatalytic hydrogen evolution 被引量:2
1
作者 Qianqian Hu Haiyan Yin +5 位作者 Yifan Liu Abdusalam Ablez Zhuangzhuang Wang Yue Zhan Chengfeng Du Xiaoying Huang 《Journal of Materials Science & Technology》 2025年第1期47-59,共13页
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho... Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution. 展开更多
关键词 Ionic liquid Ultrathin Cd_(0.8)Zn_(0.2)S nanosheets MXene Schottky junction Photoexcited charge separation Photocatalytic H_(2)evolution
原文传递
Regulating pore structure and pseudo-graphitic phase of hard carbon anode towards enhanced sodium storage performance 被引量:1
2
作者 Guang Zeng Yue Zeng +5 位作者 Huamin Hu Yaqing Bai Fangjie Nie Junfei Duan Zhaoyong Chen Qi-Long Zhu 《Chinese Chemical Letters》 2025年第7期560-567,共8页
The pore structure and pseudo-graphitic phase(domain size and content)of a hard carbon anode play key roles in improving the plateau capacity of sodium-ion batteries(SIBs),while it is hard to regulate them effectively... The pore structure and pseudo-graphitic phase(domain size and content)of a hard carbon anode play key roles in improving the plateau capacity of sodium-ion batteries(SIBs),while it is hard to regulate them effectively and simultaneously.This study delves into the synthesis of hard carbons with tailored microstructures from esterified sodium carboxymethyl cellulose(CMC-Na).The hard carbon(EHC-500)with maximized pseudo-graphitic content(73%)and abundant uniformly dispersed closed pores was fabricated,which provides sufficient active sites for sodium ion intercalation and pore filling.Furthermore,minimized lateral width(L_(a))of pseudo-graphitic domains in EHC-500 is simultaneously realized to improve the accessibility of sodium ions to the intercalation sites and filling sites.Therefore,the optimized microstructure of EHC-500 contributes to a remarkable reversible capacity of 340 mAh/g with a high plateau capacity of 236.7 mAh/g(below 0.08 V).These findings underscore the pivotal role of microcrystalline structure and pore structure in the electrochemical performance of hard carbons and provide a novel route to guide the design of hard carbons with optimal microstructures towards enhanced sodium storage performance. 展开更多
关键词 Hard carbons Plateau capacity ESTERIFICATION Microstructure regulation Sodium-ion batteries
原文传递
Se-Regulated Mn S Porous Nanocubes Encapsulated in Carbon Nanofibers as High-Performance Anode for Sodium-Ion Batteries 被引量:1
3
作者 Puwu Liang Duo Pan +7 位作者 Xiang Hu Ke RYang Yangjie Liu Zijing Huo Zheng Bo Lihong Xu Junhua Xu Zhenhai Wen 《Nano-Micro Letters》 2025年第10期239-258,共20页
Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, th... Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS_(0.5)Se_(0.5) into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS_(0.5)Se_(0.5)-carbon nanofiber composite(MnS_(0.5)Se_(0.5)@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS_(0.5)Se_(0.5), including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS_(0.5)Se_(0.5)@N-CNF allevi- ates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS_(0.5)Se_(0.5)@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency(90.8%), high-rate capability(370.5 m Ahg^(-1) at 10 Ag^(-1)) and long durability(over 5000 cycles at 5 Ag^(-1)). The MnS_(0.5)Se_(0.5)@N-CNF//NVP@C full cell, assembled with MnS_(0.5)Se_(0.5)@N-CNF as anode and Na_(3)V_(2)(PO_4)_(3)@C as cathode, exhibits a high energy density of 254 Wh kg^(-1) can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms. 展开更多
关键词 Sodium-ion batteries ANODE MnS_(0.5)Se_(0.5) Carbon nanofiber Defects
在线阅读 下载PDF
Synthesis and third‑order nonlinear optical property of Ti_(4)L_(6) cage‑based metal‑organic framework
4
作者 CHEN Ruiyan HE Yanping ZHANG Jian 《无机化学学报》 北大核心 2025年第10期2149-2156,共8页
Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imida... Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909. 展开更多
关键词 titanium-organic cage metal-organic framework crystal structure nonlinear optics
在线阅读 下载PDF
Electrosynthesis of hydroxylamine from earth-abundant small molecules
5
作者 Wen-Bo Wei Qi-Long Zhu 《Chinese Journal of Structural Chemistry》 2025年第1期5-7,共3页
With the rapid evolution of contemporary society,there is an increasing demand for the production of bulk chemicals such as fertilizers,fuels,and pharmaceuticals.However,current synthetic approaches for these bulk che... With the rapid evolution of contemporary society,there is an increasing demand for the production of bulk chemicals such as fertilizers,fuels,and pharmaceuticals.However,current synthetic approaches for these bulk chemicals predominantly depend on conventional fossil fuel-based chemical refining processes.This dependence poses a substantial challenge to both environmental sustainability and energy resources[1].An example of this issue is the synthesis of hydroxylamine(NH2OH). 展开更多
关键词 earth abundant small molecules ELECTROSYNTHESIS synthesis hydroxylamine nh oh synthetic approaches energy resources HYDROXYLAMINE environmental sustainability bulk chemicals
原文传递
A new class of NIR-II luminescent nanoprobes via Ho^(3+) sensitization for deep-tissue multiplexed imaging
6
作者 Yitong Shi Dengfeng Yang +1 位作者 Wei Zheng Xueyuan Chen 《Chinese Journal of Structural Chemistry》 2025年第6期3-5,共3页
Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue b... Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2]. 展开更多
关键词 Deep tissue multiplexed imaging NIR II luminescent nanoprobes Emission peaks Photochemical stability Signal noise ratio Ho sensitization lanthanide doped luminescent nanocrystals Penetration depth
原文传递
Synergy of sub-nano iridium clusters and cucurbit[6]uril-derived carbon boosts acidic water splitting
7
作者 Tao Shao Wei Geng +3 位作者 Xianping Qin Shuai Yue Rong Cao Minna Cao 《Nano Research》 2025年第11期178-187,共10页
Acidic water splitting,essential for sustainable hydrogen production,is limited by the sluggish oxygen evolution reaction(OER).This study presents a series of iridium-based sub-nanocluster electrocatalysts supported o... Acidic water splitting,essential for sustainable hydrogen production,is limited by the sluggish oxygen evolution reaction(OER).This study presents a series of iridium-based sub-nanocluster electrocatalysts supported on a porous carbon matrix(CBC-Ir-T,T=300,400,and 500°C)for efficient overall water splitting.Impressively,CBC-Ir-400,with an ultralow Ir loading of 1.4μg·cm^(−2),exhibits exceptional bifunctional activity,achieving 10 mA·cm^(−2) at overpotentials of only 240 mV for OER and 30 mV for hydrogen evolution reaction(HER).In practical acidic water splitting,it delivers a cell voltage of 1.53 V at 10 mA·cm^(−2),outperforming the commercial Ir/C||Pt/C system.Comprehensive characterization reveals that the cucurbit[6]uril-derived porous carbon matrix,rich in defects and high specific surface area,promotes the formation of uniformly dispersed sub-nano Ir clusters.This optimizes the iridium electronic structure for enhanced intermediate adsorption,while strong electrical coupling with carbon support boosts charge transfer and mass transport.This synergy drives its superior performance.Our findings offer a scalable strategy for designing high-performance,ultralow-loading iridium sub-nanocluster catalysts,paving the way for cost-effective and sustainable hydrogen production via water electrolysis. 展开更多
关键词 sub-nano iridium cluster cucurbit[n]uril-derived carbon oxygen evolution reaction hydrogen evolution reaction acidic water splitting
原文传递
Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries
8
作者 Wei Xiong Xingyu Feng +6 位作者 Tao Huang Zhencheng Huang Xuanlong He Jianhong Liu Yi Xiao Xinzhong Wang Qianling Zhang 《Journal of Materials Science & Technology》 2025年第9期67-76,共10页
Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electric... Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electrical conductivity.Unlike well-studied graphene,perovskite and MXene materials in various fields,the research about MBene is still in its infancy.The inadequate exploration of efficient etching methods impedes their further study.Herein,we put forward an efficient microwave-assisted hydrother-mal alkaline solution etching strategy for exfoliating MoAlB MAB phase into 2D MoB MBenes with a well accordion-like structure,which displays a remarkable electrochemical performance in sodium ion batter-ies(SIBs)with a reversible specific capacity of 196.5 mAh g^(-1)at the current density of 50 mA g^(-1),and 138.6 mAh g^(-1)after 500 cycles at the current density of 0.5 A g^(-1).The underlying mechanism toward excellent electrochemical performance are revealed by comprehensive theoretical simulations.This work proves that MBene is a competitive candidate as the next generation anode of sodium ion batteries. 展开更多
关键词 MBene MAB phase Metal boride MoB Microwave-assisted hydrothermal Sodium-ion batteries
原文传递
Enhancing interlayer hydrogen bonds of 2D Ruddlesden-Popper perovskite toward stable polarization-sensitive photodetection
9
作者 Xian-Mei Zhao Li-Wei Tang +6 位作者 Yi Liu Yu Ma Tian Yang Hao Rong Lin-Jie Wei Jun-Hua Luo Zhi-Hua Sun 《Chinese Chemical Letters》 2025年第7期582-586,共5页
2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der W... 2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der Waals interaction between the organic spacing bilayers is insufficient to preserve the stability of RP-type materials.Hence,it is of great significance to explore new stable 2D RP-phase candidates.In this work,we have successfully constructed a highly-stable polar 2D perovskite,(t-ACH)_(2)PbI_(4)(1,where t-ACH^(+)is HOOC_(8)H_(12)NH_(3)^(+)),by adopting a hydrophobic carboxylate trans-isomer of tranexamic acid as the spacing component.Strikingly,strong O-H…O hydrogen bonds between t-ACH^(+)organic bilayers compose the dimer,thus decreasing van der Waals gap and enhancing structural stability.Besides,such orientational hydrogen bonds contribute to the formation of structural polarity and generate an obvious bulk photovoltaic effect in 1,which facilitates its self-powered photodetection.As predicted,the combination of inherent anisotropy and polarity leads to self-powered polarized-light detection with a high ratio of around∼5.3,superior to those of inorganic 2D counterparts.This work paves a potential way to design highly-stable 2D perovskites for high-performance optoelectronic devices. 展开更多
关键词 Polar hybrid perovskite Intermolecular interaction Strong stability Bulk photovoltaic effect Self-powered polarization light detection
原文传递
Surface confinement of sub-1 nm Pt nanoclusters on 1D/2D NiO nanotubes/nanosheets as an effective electrocatalyst for urea-assisted energy-saving hydrogen production
10
作者 Jiaxin Li Yan Lv +5 位作者 Xueyan Wu Xinyu Guo Zhuojun Yang Jixi Guo Tianhua Zhou Dianzeng Jia 《Chinese Journal of Catalysis》 2025年第2期203-218,共16页
To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts,the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promi... To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts,the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promising approach for improving catalytic efficiency.In this study,sub-1 nm Pt nanoclusters were uniformly confined on NiO supports with a hierarchical nanotube/nanosheet structure(Pt/NiO/NF)through a combination of spatial domain confinement and annealing.The resulting catalyst exhibited excellent electrocatalytic activity and stability for hydrogen evolution(HER)and urea oxidation reactions(UOR)under alkaline conditions.Structural characterization and density functional theory calculations demonstrated that sub-1 nm Pt nanoclusters were immobilized on the NiO supports by Pt–O–Ni bonds at the interface.The strong metal-support interaction induced massive charge redistribution around the heterointerface,leading to the formation of multiple active sites.The Pt/NiO/NF catalyst only required an overpotential of 12 and 136 mV to actuate current densities of 10 and 100 mA cm^(-2) for the HER,respectively,and maintained a voltage retention of 96%for 260 h of continuous operation at a current density of 500 mA cm^(-2).Notably,in energy-efficient hydrogen production systems coupled with the HER and UOR,the catalyst required cell voltages of 1.37 and 1.53 V to drive current densities of 10 and 50 mA cm^(-2),respectively—approximately 300 mV lower than conventional water electrolysis systems.This study presents a novel pathway for designing highly efficient and robust sub-nanometer metal cluster catalysts. 展开更多
关键词 Metal-support interaction Sub-nanometric cluster Hydrogen evolution reaction Size engineering Urea oxidation reaction
在线阅读 下载PDF
The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration
11
作者 Quan Zhou Xiao-Min Chen +3 位作者 Xujie Qin Zhe-Ning Chen Jun Chen Wei Zhuang 《Chinese Chemical Letters》 2025年第4期537-541,共5页
Metallabenzenes, a type of aromatic compound that includes metal atoms, have opened up new avenues for creating materials with unique properties. A distinctive feature of metallabenzenes is the significant deviation o... Metallabenzenes, a type of aromatic compound that includes metal atoms, have opened up new avenues for creating materials with unique properties. A distinctive feature of metallabenzenes is the significant deviation of their metal atoms from the planar configuration of the C5 ring, a phenomenon that paradoxically enhances their aromatic character. In this investigation, we propose that this counterintuitive increase in aromaticity upon geometric distortion is governed by the interactions of frontier orbitals in the σ-space. This insight not only corroborates the previously suggested role of σ-space orbitals in inducing geometric non-planarity in metallabenzenes but also underscores their pivotal contribution to the compounds' enhanced aromaticity. As a result, this work broadens the scope of the σ-control mechanism,highlighting its usefulness for the rational design of functional metalla-aromatic materials. 展开更多
关键词 METALLABENZENES Metalla-aromaticity σ-Control NICS Functional materials
原文传递
Photocatalytic,electrocatalytic and photoelectrocatalytic conversion of methane to alcohol
12
作者 Yu Huang Lei Zou +1 位作者 Yuan-Biao Huang Rong Cao 《Chinese Journal of Catalysis》 2025年第3期207-229,共23页
The conversion of the greenhouse gas methane to value-added chemicals such as alcohols is a promising technology to mitigate environmental issue and the energy crisis.Especially,the sustainable photocatalytic,electroc... The conversion of the greenhouse gas methane to value-added chemicals such as alcohols is a promising technology to mitigate environmental issue and the energy crisis.Especially,the sustainable photocatalytic,electrocatalytic and photoelectrocatalytic conversion of methane at ambient conditions is regarded as an alternative technology to replace with thermocatalysis.In this review,we summarize recent advances in photocatalytic,electrocatalytic and photoelectrocatalytic conversion of methane into alcohols.We firstly introduce the general principles of photocatalysis,electrocatalysis and photoelectrocatalysis.Then,we discuss the mechanism for selective activation of C-H bond and following oxygenation over metal,inorganic semiconductor,organic semiconductor,and heterojunction composite systems in the photocatalytic,electrocatalytic and photoelectrocatalytic methane oxidation in detail.Later,we present insights into the construction of effective photocatalyst,electrocatalyst and photoelectrocatalyst for methane conversion into alcohols from the perspective of band structures and active sites.Finally,the challenges and outlook for future designs of photocatalytic,electrocatalytic and photoelectrocatalytic methane oxidation systems are also proposed. 展开更多
关键词 Photocatalysis ELECTROCATALYSIS PHOTOELECTROCATALYSIS Methane conversion ALCOHOL
在线阅读 下载PDF
Novel open-framework chalcogenide photocatalysts:Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution
13
作者 Haiyan Yin Abdusalam Ablez +4 位作者 Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang 《Chinese Journal of Structural Chemistry》 2025年第4期44-55,共12页
Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as high... Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion. 展开更多
关键词 OPEN-FRAMEWORK Metal sulfide Ion exchange Cobalt cocatalyst Valence state Charge transfer Photocatalytic hydrogen evolution
原文传递
Highly efficient lanthanide-doped theranostic nanoplatform for real-time monitoring of direct triplet-sensitized photodynamic therapy
14
作者 Shan-Shan Zhou Jian-Xi Ke +3 位作者 Yuan-Chao Lei Li-Xiang Ye Yong-Sheng Liu Mao-Chun Hong 《Rare Metals》 2025年第10期7527-7538,共12页
Photodynamic therapy(PDT)is widely used in cancer treatment because of its noninvasiveness and minimal side effects.However,low therapeutic efficiency and the challenge of treatment visualization limit its development... Photodynamic therapy(PDT)is widely used in cancer treatment because of its noninvasiveness and minimal side effects.However,low therapeutic efficiency and the challenge of treatment visualization limit its development.Herein,we constructed a simple yet efficient lanthanide-doped theranostic nanoplatform termed as LiLuF_(4):Yb,Er,Ce@LiYF_(4)@LiLuF_(4):Nd-chlorine 6(TNPs-Ce6)that enables real-time monitoring of the therapeutic effects of PDT.Upon orthogonal excitation by near-infrared(NIR)light,the Nd^(3+)-doped TNPs activated the triplets of Ce6 photosensitizers via a direct lanthanide-triplet energy transfer process,which allowed to directly active the low-lying triplet state of the photosensitizer without undergoing singlet-triplet intersystem crossing(ISC)process,thereby significantly enhancing the efficiency of the photodynamic process.Meanwhile,the incorporation of Er^(3+)ions within the core endowed the nanoplatform with NIR-Ⅱb imaging capabilities,allowing convenient real-time monitoring of the photodynamic treatment process.Characterization tests revealed that the TNPs-Ce6 nanoplatform,exhibiting an NIR quantum yield of 21.7%at an ultralow excitation power density of 0.1 W cm^(-2),provides a real-time imaging resolution as low as75μm in the NIR-Ⅱb range and achieves a tumor suppression rate of 94%.Therefore,this highly efficient theranostic nanoplatform,with real-time treatment monitoring capability,demonstrates significant potential in cancer therapy. 展开更多
关键词 Lanthanide-doped nanoparticles NIR-Ib imaging Photodynamic therapy Lanthanide-triplet energy transfer THERANOSTIC
原文传递
Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM
15
作者 Jindan Zhang Zhenghong Li +7 位作者 Chi Li Mengqi Zhu Shicheng Tang Kaicong Cai Zhibin Cheng Chulong Liu Shengchang Xiang Zhangjing Zhang 《Chinese Chemical Letters》 2025年第3期170-176,共7页
Although lots of efforts have been devoted on new less hygroscopic dopants to address problems in hole transport materials(HTM),the long-time post-oxidation and the volatilization of 4-tert-butylpyridine(tBP)are still... Although lots of efforts have been devoted on new less hygroscopic dopants to address problems in hole transport materials(HTM),the long-time post-oxidation and the volatilization of 4-tert-butylpyridine(tBP)are still issues.A new doping mechanism for spiro-OMeTAD by disulfiram(TETD)is revealed in this work.Owing to its disulfide bond,TETD can be activated easily to produce reactive sulfur for the rapid oxidation of spiro-OMeTAD in the absence of oxygen with formation of[spiro-OMeTAD•]+[SC(S)N(C_(2)H_(5))_(2)]^(-).Thus,in this situation,the Li+ion has the opportunity to coordinate tBP and fix each other in HTM film.DFT calculations suggest that the resulting favorable energy(with a△E of−1.29 eV)must come from the mutual interactions among Li^(+),TFSI^(−),and tBP,which is different from the well-known doping process that tBP would not participate in the doping reaction.As a result,the introduction of a new radical into the HTM greatly reduce device performance fluctuations due to the environmental dependence and inhibit tBP volatilizing for enhanced long-term stability. 展开更多
关键词 Perovskite solar cells Hole transport layer DOPANTS Spiro-OMeTAD oxidation Hole mobility conductivity
原文传递
Impact of functional groups in spacer cations on the properties of PEA-based 2D monolayer halide perovskites
16
作者 Chenchen Li Xian Chen +3 位作者 Tan Jin Tianmin Wu Jun Chen Wei Zhuang 《Nano Materials Science》 2025年第1期74-82,共9页
Incorporating low-dimensionalization technologies effectively tackle the challenge of inadequate long-term stability in hybrid halide perovskites,however their wide bandgap and strong quantum well confinement remain s... Incorporating low-dimensionalization technologies effectively tackle the challenge of inadequate long-term stability in hybrid halide perovskites,however their wide bandgap and strong quantum well confinement remain substantial obstacle for various optoelectronic applications.Addressing these issues without compromising longterm stability has emerged as a pivotal focus in materials science,in particular exploring the effects of the functional groups within spacer cations.Our simulations reveal that the robustπ-πstacking interactions involving PEA^(+)and the strong hydrogen bonding interactions between PEA^(+)and MX^(4-)_(6)contribute to narrowing the electronic bandgap in 2D monolayer PEA_(2)MX_(4)(e.g.2D monolayer PEA_(2)SnI_(4):1.34 eV)for reasonable visible-light absorption while simultaneously ensuring their favorable long-term stability.Moreover,the delocalized orbitals and relatively high dielectric constants in PEA^(+),attributed to the conjugated benzene ring,has been observed to weaken the potential barrier,exciton binding effect and quantum well confinement in 2D monolayer PEA2MX4,thus facilitating photogenerated electron-hole separations and out-of-plane carrier transport.The impact of spacer cations on the optoelectronic and transport properties of 2D monolayer perovskites highlights the critical role of meticulously chosen and well-designed spacer cations,especially functional groups,in shaping their photophysical properties and ensuring long-term stability even under extremely operating conditions. 展开更多
关键词 Long-term stability Exciton binding effect Quantum transport First-principles calculations Quantum well confinement
在线阅读 下载PDF
Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage
17
作者 Ying-Mei Zhong Zi-Jun Xia +3 位作者 Yu-Hang Hu Li-Peng Zhou Li-Xuan Cai Qing-Fu Sun 《Chinese Chemical Letters》 2025年第4期188-192,共5页
Selective separation of phenanthrene(PHE)from aromatic isomer mixtures poses a significant challenge in industry due to the similar physical properties of PHE and its isomer anthracene(ANT).Herein,we report the self-a... Selective separation of phenanthrene(PHE)from aromatic isomer mixtures poses a significant challenge in industry due to the similar physical properties of PHE and its isomer anthracene(ANT).Herein,we report the self-assembly of a water-soluble Pd_(2)L_(2) cage 1 with a large hydrophobic cavity,formed from novel macrocyclic ligands(L)and cis-Pd(Ⅱ).Cage 1 can selectively encapsulate PHE instead of ANT.Based on host-vip recognition followed by extraction,we achieve a remarkable 99%purity of PHE separation from an equimolar mixture of PHE and ANT using cage 1 in aqueous solution.Importantly,the separation performance of PHE using cage 1 remains unaffected even after five extraction cycles,demonstrating its robustness.This work highlights the potential of supramolecular cages for efficient and cost-effective PHE separation from the isomer ANT in aqueous solutions using such promising host-vip strategy. 展开更多
关键词 Coordination cage Host-vip chemistry Selective separation
原文传递
Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs
18
作者 Shujun Ning Zhiyuan Wei +2 位作者 Zhening Chen Tianmin Wu Lu Zhang 《Chinese Chemical Letters》 2025年第7期523-527,共5页
Crystal defects and morphological modifications are popular strategies to enhance the catalytic activity of heterogeneous semiconductor photocatalysts.Despite defect engineering and morphology control show their succe... Crystal defects and morphological modifications are popular strategies to enhance the catalytic activity of heterogeneous semiconductor photocatalysts.Despite defect engineering and morphology control show their successful applications in ZnO,the effects of curved surface modifications on the photocatalytic performance of ZnO and their interplay with the defect formation remain unclear.To resolve this puzzle,we systemically investigate the joint effects of curvature and defect formation on the electronic structure,optoelectronic properties,and photocatalytic performance of ZnO slabs using first-principles calculations.We find that curvature deformation effectively narrows the electronic bandgap by up to 1.6 eV and shifts the p-/d-band centers,thereby enhancing light absorption in the visible and near-ultraviolet regions.Besides,curvature deformation stimulates self-polarization,facilitating the separation of photogenerated electrons and holes.Also,curvature deformation promotes the formation of defects by reducing defect formation energy(by up to 1.0 eV),thus creating abundant reaction sites for photocatalysis.Intriguingly,the synergistic interaction between curvature and defect deformation further strengthens the self-polarization,narrows the electronic bandgaps,adjusts the p-/d-band centers to improve the optoelectronic properties,and influences the dissociation and free energy barriers of intermediates.Consequently,our findings reveal that this synergy substantially enhances the photocatalytic performance of ZnO slabs,providing deeper insights into the role of defect engineering and morphology control on photocatalysis. 展开更多
关键词 PHOTOCATALYSIS ZnO slab Curvature deformation First-principles calculation Defect engineering
原文传递
Water-Assisted Growth of Bi_(2)Te_(3)-Sb_(2)Te_(3)Lateral Heterostructures for Enhanced Second Harmonic Generation
19
作者 Xinfeng Wang Han Wang +3 位作者 Yiran Wu Yulong Lian Jinyang Liu Sangen Zhao 《Chinese Journal of Chemical Physics》 2025年第2期240-248,I0035-I0038,I0041,共14页
The heterostructures incorporated with two or more distinctive two-dimensional(2D)materials have attracted great attention be-cause they could give rise to enhanced prop-erty in comparison with their individual counte... The heterostructures incorporated with two or more distinctive two-dimensional(2D)materials have attracted great attention be-cause they could give rise to enhanced prop-erty in comparison with their individual counterparts.Here,a water-assisted two-step rapid physical vapor deposition(rPVD)method was explored and used to synthesize Bi_(2)Te_(3)-Sb_(2)Te_(3)lateral het-erostructures(LHS)successfully.The Bi_(2)Te_(3)-Sb_(2)Te_(3)LHS is in nearly uniform size,and grows along three particular orientations with the intersection angles of 120°.Inter-estingly,we found that the water molecules play a significant role in determining the growth orientation,namely whether it will grow along the vertical or lateral direction in 2D structure.Hence,a growth mechanism of LHS based on the water-assisted two-step rPVD was present,which can be used as a general strategy and extended to the growth of other 2D heterostruc-tures or homostructures,such as SnS-SnSe LHS and SnS-SnS lateral homostructures.Fur-thermore,the second-harmonic generation intensity of the Bi_(2)Te_(3)-Sb_(2)Te_(3)LHS is much stronger than that of the Bi_(2)Te_(3)/Sb_(2)Te_(3)vertical heterostructures(VHS).This work opens a new approach for the synthesis of water-assisted lateral 2D heterostructures or homostruc-tures and offers a new method to enhance the second-harmonic generation properties of topo-logical insulating materials. 展开更多
关键词 Water-assisted growth Lateral heterostructure Topological insulator Second harmonic generation
在线阅读 下载PDF
Interface design of tea stem-derived micropore carbon enables high-performance Na-Se batteries
20
作者 Qi Xia Ke Yan +5 位作者 Ke Jin Yang Wu Yanan Fu Ding Chen Huixin Chen Hongjun Yue 《Chinese Chemical Letters》 2025年第10期641-646,共6页
Na-Se batteries have caught tremendous attention because of natural abundant of element sodium and their high volumetric energy density(2530 Wh/L).However,the low utilization ratio of Se is the main obstacle for pract... Na-Se batteries have caught tremendous attention because of natural abundant of element sodium and their high volumetric energy density(2530 Wh/L).However,the low utilization ratio of Se is the main obstacle for practical application.Herein,an advanced Se-based electrode is designed and prepared by using tea stem-derived micropore carbon matrix(TSC)as Se host and coating TSC/Se with cyclic polyacrylonitrile(cPAN).TSC/Se/cPAN electrode shows rate capacity of 318.3 mAh/g at 2 C(1 C=675 mA/g)and great discharge capacity of 420.6 mAh/g after 300 cycles at 0.2 C.The impressive electrochemical performance is mainly ascribed to the interface design of c PAN coating,resulting in the enhanced electronic conductivity of whole electrode and high ratio of robust inorganic salt NaCl in CEI film.The TSC/Se/c PAN||NVP full cell also exhibits great discharge capacity of 556.6 mAh/g after 55 cycles at 0.1 C. 展开更多
关键词 Interface design Cyclic polyacrylonitrile Biomass recycling CEI analysis Na-Se batteries
原文传递
上一页 1 2 55 下一页 到第
使用帮助 返回顶部