A partial-periodic model is proposed for predicting structural properties of composite laminate structures.The partial-periodic model contains periodic boundary conditions in one direction or two directions,and free b...A partial-periodic model is proposed for predicting structural properties of composite laminate structures.The partial-periodic model contains periodic boundary conditions in one direction or two directions,and free boundary condition in other directions.In the present study,partial-periodic model for composite laminate beam structures is particularly studied.Three-point bending experiments for laminate beam specimens with different laying parameters are firstly used to verify the present partial-periodic model.In addition,a detailed finite element method(FEM)model is also used to further quantitatively compare with the present partial-periodic model for composite laminate beams with different laying parameters.The results indicate that the proposed partial-periodic model is capable of providing accurate predictions in most cases.The computational time cost of the proposed partial-periodic model is much lower than that of the detailed FEM model as well.Convergence studies are also conducted for the present partial-periodic model with different model sizes and element sizes.It is suggested that the proposed partial-periodic model has the potential to be used as an accurate and time-saving tool for predicting the structural properties of composite laminate beam structures.展开更多
Additive manufacturing(AM)has made significant progress in recent years and has been successfully applied in various fields owing to its ability to manufacture complex geometries.This method efficiently expands the de...Additive manufacturing(AM)has made significant progress in recent years and has been successfully applied in various fields owing to its ability to manufacture complex geometries.This method efficiently expands the design space,allowing for the creation of products with better performance than ever before.With the emergence of new manufacturing technologies,new design methods are required to efficiently utilize the expanded design space.Therefore,topology optimization methods have attracted the attention of researchers because of their ability to generate new and optimized designs without requiring prior experience.The combination of AM and topology optimization has proven to be a powerful tool for structural innovation in design and manufacturing.However,it is important to note that AM does not eliminate all manufacturing restrictions but instead replaces them with a different set of design considerations that designers must consider for the successful implementation of these technologies.This has motivated research on topology optimization methods that incorporate manufacturable constraints for AM structures.In this paper,we present a survey of the latest studies in this research area,with a particular focus on developments in China.Additionally,we discuss the existing research gaps and future development trends.展开更多
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing...To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.展开更多
The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electrom...The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.展开更多
Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast pho...Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.展开更多
Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, th...Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS_(0.5)Se_(0.5) into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS_(0.5)Se_(0.5)-carbon nanofiber composite(MnS_(0.5)Se_(0.5)@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS_(0.5)Se_(0.5), including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS_(0.5)Se_(0.5)@N-CNF allevi- ates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS_(0.5)Se_(0.5)@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency(90.8%), high-rate capability(370.5 m Ahg^(-1) at 10 Ag^(-1)) and long durability(over 5000 cycles at 5 Ag^(-1)). The MnS_(0.5)Se_(0.5)@N-CNF//NVP@C full cell, assembled with MnS_(0.5)Se_(0.5)@N-CNF as anode and Na_(3)V_(2)(PO_4)_(3)@C as cathode, exhibits a high energy density of 254 Wh kg^(-1) can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imida...Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.展开更多
Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material...Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material and geometric large deformation,the SMA honeycomb exhibits significant and complex nonlinearity in the skin and there is a lack of relevant previous research.In this paper,the nonlinear properties of the SMA honeycomb structure with arbitrary geometry are investigated for the first time for large deformation flexible skin applications by theoretical and experimental analysis.Firstly,a novel theoretical model of SMA honeycomb structure considering both material and geometric nonlinearity is proposed,and the corresponding calculation method of nonlinear governing equations is given based upon the shooting method and Runge–Kutta method.Then,the tensile behaviors of four kinds of SMA honeycomb structures,i.e.,U-type,V-type,cosine-type,and trapezoid-type,are analyzed and predicted by the proposed theoretical model and compared with the finite element analysis(FEA)results.Moreover,the tensile experiments were carried out by stretching U-type and V-type honeycomb structures to a global strain of 60%and 40%,respectively,to perform large deformation analysis and verify the theoretical model.Finally,experimental verification and finite element validation show that the curves of the theoretical model results,experimental results,and simulation results are in good agreement,illustrating the generalizability and accuracy of the proposed theoretical model.The theoretical model and experimental investigations in this paper are considered to provide an effective foundation for analyzing and predicting the mechanical behavior of SMA honeycomb flexible skins with large extensional deformations.展开更多
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting device...In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.展开更多
Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue b...Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].展开更多
Digital rock analysis(DRA)is fundamental for geo-energy research,enabling the characterisation of microstructures for applications like hydrocarbon recovery,carbon storage,and groundwater modelling.Although 2D CT imag...Digital rock analysis(DRA)is fundamental for geo-energy research,enabling the characterisation of microstructures for applications like hydrocarbon recovery,carbon storage,and groundwater modelling.Although 2D CT images provide valuable pore-scale data,the scarcity of real-world datasets limits the effectiveness of advanced analysis.Generative AI presents a promising approach for synthesizing high-quality rock images but faces key challenges,including high computational demands,insufficient evaluation metrics,and the trade-off between image fidelity and diversity.To address these limitations,this study proposes the use of Low-Rank Adaptation(LoRA)for fine-tuning stable diffusion models,significantly reducing computational requirements while maintaining image quality.A systematic investigation was conducted to evaluate the influence of LoRA training parameters,including rank and learning rate,on the quality of generated images.Image outputs were assessed using both standard generative metrics,such as Kernel Inception Distance(KID),and domain-specific metrics,including porosity,pore count,and pore area distributions.The optimised LoRA-enhanced diffusion model achieved a 92.6% reduction in KID relative to baseline models,while also improving inference speed.Building on these advancements,this study demonstrates that the LoRA-enhanced diffusion model significantly improves neural network extrapolation in incomplete data scenarios through statistically consistent synthetic generation.Despite control challenges,this approach reduces costs and enables diverse applications,bridging fundamental rock physics with practical energy research.展开更多
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven...Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).展开更多
Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electric...Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electrical conductivity.Unlike well-studied graphene,perovskite and MXene materials in various fields,the research about MBene is still in its infancy.The inadequate exploration of efficient etching methods impedes their further study.Herein,we put forward an efficient microwave-assisted hydrother-mal alkaline solution etching strategy for exfoliating MoAlB MAB phase into 2D MoB MBenes with a well accordion-like structure,which displays a remarkable electrochemical performance in sodium ion batter-ies(SIBs)with a reversible specific capacity of 196.5 mAh g^(-1)at the current density of 50 mA g^(-1),and 138.6 mAh g^(-1)after 500 cycles at the current density of 0.5 A g^(-1).The underlying mechanism toward excellent electrochemical performance are revealed by comprehensive theoretical simulations.This work proves that MBene is a competitive candidate as the next generation anode of sodium ion batteries.展开更多
2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der W...2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der Waals interaction between the organic spacing bilayers is insufficient to preserve the stability of RP-type materials.Hence,it is of great significance to explore new stable 2D RP-phase candidates.In this work,we have successfully constructed a highly-stable polar 2D perovskite,(t-ACH)_(2)PbI_(4)(1,where t-ACH^(+)is HOOC_(8)H_(12)NH_(3)^(+)),by adopting a hydrophobic carboxylate trans-isomer of tranexamic acid as the spacing component.Strikingly,strong O-H…O hydrogen bonds between t-ACH^(+)organic bilayers compose the dimer,thus decreasing van der Waals gap and enhancing structural stability.Besides,such orientational hydrogen bonds contribute to the formation of structural polarity and generate an obvious bulk photovoltaic effect in 1,which facilitates its self-powered photodetection.As predicted,the combination of inherent anisotropy and polarity leads to self-powered polarized-light detection with a high ratio of around∼5.3,superior to those of inorganic 2D counterparts.This work paves a potential way to design highly-stable 2D perovskites for high-performance optoelectronic devices.展开更多
To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts,the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promi...To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts,the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promising approach for improving catalytic efficiency.In this study,sub-1 nm Pt nanoclusters were uniformly confined on NiO supports with a hierarchical nanotube/nanosheet structure(Pt/NiO/NF)through a combination of spatial domain confinement and annealing.The resulting catalyst exhibited excellent electrocatalytic activity and stability for hydrogen evolution(HER)and urea oxidation reactions(UOR)under alkaline conditions.Structural characterization and density functional theory calculations demonstrated that sub-1 nm Pt nanoclusters were immobilized on the NiO supports by Pt–O–Ni bonds at the interface.The strong metal-support interaction induced massive charge redistribution around the heterointerface,leading to the formation of multiple active sites.The Pt/NiO/NF catalyst only required an overpotential of 12 and 136 mV to actuate current densities of 10 and 100 mA cm^(-2) for the HER,respectively,and maintained a voltage retention of 96%for 260 h of continuous operation at a current density of 500 mA cm^(-2).Notably,in energy-efficient hydrogen production systems coupled with the HER and UOR,the catalyst required cell voltages of 1.37 and 1.53 V to drive current densities of 10 and 50 mA cm^(-2),respectively—approximately 300 mV lower than conventional water electrolysis systems.This study presents a novel pathway for designing highly efficient and robust sub-nanometer metal cluster catalysts.展开更多
Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreov...Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreover,surface supported atoms are also widely explored for high active and selecting catalysts.Severe deformation,even dipping into the surface,of these clusters can be expected because of the very active edge of clusters and strong interaction between supported clusters and surfaces.However,most models of these clusters are supposed to simply float on the top of the surface because ab initio simulations cannot afford the complex reconstructions.Here,we develop an accurate graph neural network machine learning potential(MLP)from ab initio data by active learning architecture through fine-tuning pre-trained models,and then employ the MLP into Monte Carlo to explore the structural evolutions of Mo and S clusters(1-8 atoms)on perfect and various defective MoS2 monolayers.Interestingly,Mo clusters can always sink and embed themselves into MoS2 layers.In contrast,S clusters float on perfect surfaces.On the defective surface,a few S atoms will fill the vacancy and rest S clusters float on the top.Such significant structural reconstructions should be carefully taken into account.展开更多
Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline in...Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.展开更多
In this study,the pure erosion behaviour of pure iron and its erosion-corrosion behaviour under different anodic polarization currents were investigated in various cathodic reactions(oxygen reduction,hydrogen ion redu...In this study,the pure erosion behaviour of pure iron and its erosion-corrosion behaviour under different anodic polarization currents were investigated in various cathodic reactions(oxygen reduction,hydrogen ion reduction,and water reduction)using a cylindrical stirring system.The corrosion-enhanced erosion(C-E)rates were determined for each condition.The results revealed that pure iron displayed similar pure erosion behaviour across all three cathodic reactions.When the cathodic reactions involve hydrogen ion reduction or water reduction,the erosion-corrosion of pure iron manifested as uniform damage,with the reduction in hardness being the main cause of the C-E in this case.Conversely,in the case of oxy-gen reduction reaction as the cathodic reaction,the erosion-corrosion presented as pitting damage,with the reduction in hardness resulting from localized concentration of anodic current and the formation of easily worn protruding flaky iron structures at the edges of the pits as the main mechanism of the C-E.Moreover,linear and exponential relationships were found between the C-E rate and the anodic current density for uniform damage and pitting damage,respectively.Finally,the concept of surface equivalent hardness was proposed,along with the establishment of a mathematical model for surface equivalent hardness based on the relationships between the C-E rate and the anodic current density.Utilizing the surface equivalent hardness enables the evaluation of the erosion rate on material surfaces considering the coupled effect.展开更多
基金financial support from the National Key Research and Development Plan(2022YFB3707700)the National Natural Science Foundation of China(11872138 and 12172074)+1 种基金the Liaoning Revitalization Talents Program(XLYC2001003)the Dalian Excellent Young Science and Technology Talent Program(2023RY025).
文摘A partial-periodic model is proposed for predicting structural properties of composite laminate structures.The partial-periodic model contains periodic boundary conditions in one direction or two directions,and free boundary condition in other directions.In the present study,partial-periodic model for composite laminate beam structures is particularly studied.Three-point bending experiments for laminate beam specimens with different laying parameters are firstly used to verify the present partial-periodic model.In addition,a detailed finite element method(FEM)model is also used to further quantitatively compare with the present partial-periodic model for composite laminate beams with different laying parameters.The results indicate that the proposed partial-periodic model is capable of providing accurate predictions in most cases.The computational time cost of the proposed partial-periodic model is much lower than that of the detailed FEM model as well.Convergence studies are also conducted for the present partial-periodic model with different model sizes and element sizes.It is suggested that the proposed partial-periodic model has the potential to be used as an accurate and time-saving tool for predicting the structural properties of composite laminate beam structures.
基金supported by National Natural Science Foundation of China(Grant Nos.12272076,U2341232,11332004,and U1808215)the 111 Project of China(Grant No.B14013).
文摘Additive manufacturing(AM)has made significant progress in recent years and has been successfully applied in various fields owing to its ability to manufacture complex geometries.This method efficiently expands the design space,allowing for the creation of products with better performance than ever before.With the emergence of new manufacturing technologies,new design methods are required to efficiently utilize the expanded design space.Therefore,topology optimization methods have attracted the attention of researchers because of their ability to generate new and optimized designs without requiring prior experience.The combination of AM and topology optimization has proven to be a powerful tool for structural innovation in design and manufacturing.However,it is important to note that AM does not eliminate all manufacturing restrictions but instead replaces them with a different set of design considerations that designers must consider for the successful implementation of these technologies.This has motivated research on topology optimization methods that incorporate manufacturable constraints for AM structures.In this paper,we present a survey of the latest studies in this research area,with a particular focus on developments in China.Additionally,we discuss the existing research gaps and future development trends.
基金financially supported by the State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology(Grant No.GZ23112)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021ME146).
文摘To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.
基金support for this work by Key Research and Development Project of Henan Province(Grant.No.241111232300)the National Natural Science Foundation of China(Grant.No.52273085 and 52303113)the Open Fund of Yaoshan Laboratory(Grant.No.2024003).
文摘The morphological distribution of absorbent in composites is equally important with absorbents for the overall electromagnetic properties,but it is often ignored.Herein,a comprehensive consideration including electromagnetic component regulation,layered arrangement structure,and gradient concentration distribution was used to optimize impedance matching and enhance electromagnetic loss.On the microscale,the incorporation of magnetic Ni nanoparticles into MXene nanosheets(Ni@MXene)endows suitable intrinsic permittivity and permeability.On the macroscale,the layered arrangement of Ni@MXene increases the effective interaction area with electromagnetic waves,inducing multiple reflection/scattering effects.On this basis,according to the analysis of absorption,reflection,and transmission(A-R-T)power coefficients of layered composites,the gradient concentration distribution was constructed to realize the impedance matching at low-concentration surface layer,electromagnetic loss at middle concentration interlayer and microwave reflection at high-concentration bottom layer.Consequently,the layered gradient composite(LG5-10-15)achieves complete absorption coverage of X-band at thickness of 2.00-2.20 mm with RL_(min) of-68.67 dB at 9.85 GHz in 2.05 mm,which is 199.0%,12.6%,and 50.6%higher than non-layered,layered and layered descending gradient composites,respectively.Therefore,this work confirms the importance of layered gradient structure in improving absorption performance and broadens the design of high-performance microwave absorption materials.
基金financial supports pro-vided by the National Natural Science Foundation of China(No.21905279)the Natural Science Foundation of Fujian Province(No.2020J05086).
文摘Small-sized Cd_(x) Zn_(1-x) S solid solution nanomaterial is an important candidate for efficient photocatalytic hydrogen evolution(PHE),but it still suffers from easy agglomeration,severe photo corrosion,and fast photogenerated electron-hole recombination.To tackle these issues,herein,we propose a new strategy to modify Cd_(x) Zn_(1-x) S nanoreactors by the simultaneous utilization of ionic-liquid-assisted morphology engineering and MXene-incorporating method.That is,we designed and synthesized a novel hierarchi-cal Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction composite through the in-situ deposition of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets on unique IL-modified Ti_(3) C_(2) MXenes by a one-pot solvothermal method for efficiently PHE.The unique construction strategy tailors the thickness of ultrathin Cd_(0.8) Zn_(0.2) S nanosheets and prevents them from stacking and agglomeration,and especially,optimizes their charge transfer pathways during the photocatalytic process.Compared with pristine Cd_(0.8) Zn_(0.2) S nanosheets,Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) has abun-dant photogenerated electrons available on the Ti_(3) C_(2) surface for proton reduction reaction,owing to the absence of deep-trapped electrons,suppression of electron-hole recombination in Cd_(0.8) Zn_(0.2) S and high-efficiency charge separation at the Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) Schottky junction interface.Moreover,the hy-drophilicity,electrical conductivity,visible-light absorption capacity,and surficial hydrogen desorption of Cd_(0.8) Zn_(0.2) S/Ti_(3) C_(2) heterostructure are significantly improved.As a result,the heterostructure exhibits out-standing photocatalytic stability and super high apparent quantum efficiency,being rendered as one of the best noble-metal-free Cd-Zn-S-based photocatalysts.This work illustrates the mechanisms of mor-phology control and heterojunction construction in controlling the catalytic behavior of photocatalysts and highlights the great potential of the IL-assisted route in the synthesis of high-performance MXene-based heterostructures for photocatalytic hydrogen evolution.
基金financially supported by the National Natural Science Foundation of China (No. 22225902, U22A20436, 22209185)National Key Research&Development Program of China (2022YFE0115900, 2023YFA1507101, 2021YFA1501500)+1 种基金the Self-deployment Project Research Program of Haixi Institutes,Chinese Academy of Sciences (No. CXZX-2022-GH04, CXZX-2023-JQ08)Science and Technology Program of Fuzhou (2023-P-009)。
文摘Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries(SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS_(0.5)Se_(0.5) into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS_(0.5)Se_(0.5)-carbon nanofiber composite(MnS_(0.5)Se_(0.5)@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS_(0.5)Se_(0.5), including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS_(0.5)Se_(0.5)@N-CNF allevi- ates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS_(0.5)Se_(0.5)@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency(90.8%), high-rate capability(370.5 m Ahg^(-1) at 10 Ag^(-1)) and long durability(over 5000 cycles at 5 Ag^(-1)). The MnS_(0.5)Se_(0.5)@N-CNF//NVP@C full cell, assembled with MnS_(0.5)Se_(0.5)@N-CNF as anode and Na_(3)V_(2)(PO_4)_(3)@C as cathode, exhibits a high energy density of 254 Wh kg^(-1) can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
文摘Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.
基金supported by the National Key Research and Development Program of China(No.2020YFB1708303)the National Natural Science Foundation of China(Nos.U1808215 and 12072058)the Fundamental Research Funds for the Central Universities of China(DUT20LK02).
文摘Honeycomb structures of shape memory alloy(SMA)have become one of the most promising materials for flexible skins of morphing aircraft due to their excellent mechanical properties.However,due to the nonlinear material and geometric large deformation,the SMA honeycomb exhibits significant and complex nonlinearity in the skin and there is a lack of relevant previous research.In this paper,the nonlinear properties of the SMA honeycomb structure with arbitrary geometry are investigated for the first time for large deformation flexible skin applications by theoretical and experimental analysis.Firstly,a novel theoretical model of SMA honeycomb structure considering both material and geometric nonlinearity is proposed,and the corresponding calculation method of nonlinear governing equations is given based upon the shooting method and Runge–Kutta method.Then,the tensile behaviors of four kinds of SMA honeycomb structures,i.e.,U-type,V-type,cosine-type,and trapezoid-type,are analyzed and predicted by the proposed theoretical model and compared with the finite element analysis(FEA)results.Moreover,the tensile experiments were carried out by stretching U-type and V-type honeycomb structures to a global strain of 60%and 40%,respectively,to perform large deformation analysis and verify the theoretical model.Finally,experimental verification and finite element validation show that the curves of the theoretical model results,experimental results,and simulation results are in good agreement,illustrating the generalizability and accuracy of the proposed theoretical model.The theoretical model and experimental investigations in this paper are considered to provide an effective foundation for analyzing and predicting the mechanical behavior of SMA honeycomb flexible skins with large extensional deformations.
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
基金Project supported by the Science and Technology Plan Joint Program of Liaoning Province of China(Natural Science Foundation-Doctoral Research Launch Project)(No.2024-BSLH-027)the Fundamental Research Funds for Undergraduate Universities of Liaoning Province of China(No.LJBKY2024033)+1 种基金the National Natural Science Foundation of China(No.12472064)the Natural Science Foundation of Liaoning Province of China(No.2023-MS-118)。
文摘In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.
基金supported by the National Natural Science Foundation of China(Nos.12474418,U22A20398,and 22135008).
文摘Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].
基金funding from Innovate UK(reference number:10003208)the China Scholarship Council(Grant No.CSC 202408420030).
文摘Digital rock analysis(DRA)is fundamental for geo-energy research,enabling the characterisation of microstructures for applications like hydrocarbon recovery,carbon storage,and groundwater modelling.Although 2D CT images provide valuable pore-scale data,the scarcity of real-world datasets limits the effectiveness of advanced analysis.Generative AI presents a promising approach for synthesizing high-quality rock images but faces key challenges,including high computational demands,insufficient evaluation metrics,and the trade-off between image fidelity and diversity.To address these limitations,this study proposes the use of Low-Rank Adaptation(LoRA)for fine-tuning stable diffusion models,significantly reducing computational requirements while maintaining image quality.A systematic investigation was conducted to evaluate the influence of LoRA training parameters,including rank and learning rate,on the quality of generated images.Image outputs were assessed using both standard generative metrics,such as Kernel Inception Distance(KID),and domain-specific metrics,including porosity,pore count,and pore area distributions.The optimised LoRA-enhanced diffusion model achieved a 92.6% reduction in KID relative to baseline models,while also improving inference speed.Building on these advancements,this study demonstrates that the LoRA-enhanced diffusion model significantly improves neural network extrapolation in incomplete data scenarios through statistically consistent synthetic generation.Despite control challenges,this approach reduces costs and enables diverse applications,bridging fundamental rock physics with practical energy research.
基金supported by the National Natural Science Foundation of China(Grant No.U2241263)the fellowship of China Postdoctoral Science Foundation(Grant No.2024M750310).
文摘Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).
基金supported by the National Key Re-search and Development Program of China(No.2020YFC1909604)SZIIT Startup Fund(No.SZIIT2022KJ072)+1 种基金Shenzhen Peacock Project Startup Fund(No.RC2023-002)Shenzhen Steady General Projects(No.KJ2024C010).
文摘Two-dimensional(2D)transition metal borides(MBenes)have emerged as a rising star and hold great potential promise for catalysis and metal ion batteries owing to a well-defined layered structure and ex-cellent electrical conductivity.Unlike well-studied graphene,perovskite and MXene materials in various fields,the research about MBene is still in its infancy.The inadequate exploration of efficient etching methods impedes their further study.Herein,we put forward an efficient microwave-assisted hydrother-mal alkaline solution etching strategy for exfoliating MoAlB MAB phase into 2D MoB MBenes with a well accordion-like structure,which displays a remarkable electrochemical performance in sodium ion batter-ies(SIBs)with a reversible specific capacity of 196.5 mAh g^(-1)at the current density of 50 mA g^(-1),and 138.6 mAh g^(-1)after 500 cycles at the current density of 0.5 A g^(-1).The underlying mechanism toward excellent electrochemical performance are revealed by comprehensive theoretical simulations.This work proves that MBene is a competitive candidate as the next generation anode of sodium ion batteries.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.22125110,U23A2094,22205233,22193042,21921001,22305248 and U21A2069)the Natural Science Foundation of Fujian Province(No.2023J02028)+3 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(No.ZDBS-LY-SLH024)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR126)the National Key Research and Development Program of China(No.2019YFA0210402)the China Postdoctoral Science Foundation(Nos.2022TQ0337 and 2023M733497).
文摘2D Ruddlesden-Popper(RP)polar perovskite,displaying the intrinsic optical anisotropy and structural polarity,has a fantastic application perspective in self-powered polarized light detection.However,the weak van der Waals interaction between the organic spacing bilayers is insufficient to preserve the stability of RP-type materials.Hence,it is of great significance to explore new stable 2D RP-phase candidates.In this work,we have successfully constructed a highly-stable polar 2D perovskite,(t-ACH)_(2)PbI_(4)(1,where t-ACH^(+)is HOOC_(8)H_(12)NH_(3)^(+)),by adopting a hydrophobic carboxylate trans-isomer of tranexamic acid as the spacing component.Strikingly,strong O-H…O hydrogen bonds between t-ACH^(+)organic bilayers compose the dimer,thus decreasing van der Waals gap and enhancing structural stability.Besides,such orientational hydrogen bonds contribute to the formation of structural polarity and generate an obvious bulk photovoltaic effect in 1,which facilitates its self-powered photodetection.As predicted,the combination of inherent anisotropy and polarity leads to self-powered polarized-light detection with a high ratio of around∼5.3,superior to those of inorganic 2D counterparts.This work paves a potential way to design highly-stable 2D perovskites for high-performance optoelectronic devices.
文摘To address the high cost and limited electrochemical endurance of Pt-based electrocatalysts,the appropriate introduction of transition metal-based compounds as supports to disperse and anchor Pt species offers a promising approach for improving catalytic efficiency.In this study,sub-1 nm Pt nanoclusters were uniformly confined on NiO supports with a hierarchical nanotube/nanosheet structure(Pt/NiO/NF)through a combination of spatial domain confinement and annealing.The resulting catalyst exhibited excellent electrocatalytic activity and stability for hydrogen evolution(HER)and urea oxidation reactions(UOR)under alkaline conditions.Structural characterization and density functional theory calculations demonstrated that sub-1 nm Pt nanoclusters were immobilized on the NiO supports by Pt–O–Ni bonds at the interface.The strong metal-support interaction induced massive charge redistribution around the heterointerface,leading to the formation of multiple active sites.The Pt/NiO/NF catalyst only required an overpotential of 12 and 136 mV to actuate current densities of 10 and 100 mA cm^(-2) for the HER,respectively,and maintained a voltage retention of 96%for 260 h of continuous operation at a current density of 500 mA cm^(-2).Notably,in energy-efficient hydrogen production systems coupled with the HER and UOR,the catalyst required cell voltages of 1.37 and 1.53 V to drive current densities of 10 and 50 mA cm^(-2),respectively—approximately 300 mV lower than conventional water electrolysis systems.This study presents a novel pathway for designing highly efficient and robust sub-nanometer metal cluster catalysts.
基金supported by the National Natural Science Foundation of China(Grant No.12374253,12074053,12004064)J.G.thanks the Foreign talents project(G2022127004L),The authors also acknowledge computer support from the Shanghai Supercomputer Center,the DUT Supercomputing Center,and the Tianhe supercomputer of Tianjin Center.
文摘Surface-supported clusters forming by aggregation of excessive adatoms could be the main defects of 2D materials after chemical vapor deposition.They will significantly impact the electronic/magnetic properties.Moreover,surface supported atoms are also widely explored for high active and selecting catalysts.Severe deformation,even dipping into the surface,of these clusters can be expected because of the very active edge of clusters and strong interaction between supported clusters and surfaces.However,most models of these clusters are supposed to simply float on the top of the surface because ab initio simulations cannot afford the complex reconstructions.Here,we develop an accurate graph neural network machine learning potential(MLP)from ab initio data by active learning architecture through fine-tuning pre-trained models,and then employ the MLP into Monte Carlo to explore the structural evolutions of Mo and S clusters(1-8 atoms)on perfect and various defective MoS2 monolayers.Interestingly,Mo clusters can always sink and embed themselves into MoS2 layers.In contrast,S clusters float on perfect surfaces.On the defective surface,a few S atoms will fill the vacancy and rest S clusters float on the top.Such significant structural reconstructions should be carefully taken into account.
基金sponsored by the National Key R&D Program of China(No.2022YFC2806200)the National Natural Science Foundation of China(No.52001055)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment(GZ22118).
文摘Corrosion poses a major threat to the safety of transportation pipelines.Therefore,it is crucial to have an in-depth understanding of corrosion mechanisms in pipeline steels for the effective management of pipeline integrity.Conducting research on corrosion mechanisms relies on the use of efficient and reliable corrosion monitoring and analysis techniques.The advancements in corrosion monitoring techniques specifically designed for the localized corrosion monitoring were aimed to be introduced,and a comprehensive overview of recent progress in understanding the localized corrosion mechanisms in pipeline steels was provided.Based on the different corrosive environments encountered,the localized corrosion issues inside pipelines are classified into two categories:localized corrosion primarily influenced by electrochemical processes and localized corrosion controlled by both electrochemical and mechanical factors.Additionally,a thorough analysis of the synergistic effects between micro-cell and macro-cell currents,as well as the interplay of mechanics and electrochemistry is presented.Finally,recommendations for future research on the mechanisms of internal localized corrosion in pipelines are provided.
基金supported by the National Key Research and Development Program(No.2022YFC2806200)the National Key Research and Development Program(No.2023YFC2810800)the Natural Science Foundation of China(No.52001055).
文摘In this study,the pure erosion behaviour of pure iron and its erosion-corrosion behaviour under different anodic polarization currents were investigated in various cathodic reactions(oxygen reduction,hydrogen ion reduction,and water reduction)using a cylindrical stirring system.The corrosion-enhanced erosion(C-E)rates were determined for each condition.The results revealed that pure iron displayed similar pure erosion behaviour across all three cathodic reactions.When the cathodic reactions involve hydrogen ion reduction or water reduction,the erosion-corrosion of pure iron manifested as uniform damage,with the reduction in hardness being the main cause of the C-E in this case.Conversely,in the case of oxy-gen reduction reaction as the cathodic reaction,the erosion-corrosion presented as pitting damage,with the reduction in hardness resulting from localized concentration of anodic current and the formation of easily worn protruding flaky iron structures at the edges of the pits as the main mechanism of the C-E.Moreover,linear and exponential relationships were found between the C-E rate and the anodic current density for uniform damage and pitting damage,respectively.Finally,the concept of surface equivalent hardness was proposed,along with the establishment of a mathematical model for surface equivalent hardness based on the relationships between the C-E rate and the anodic current density.Utilizing the surface equivalent hardness enables the evaluation of the erosion rate on material surfaces considering the coupled effect.