Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare AI/Si FGM u...Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare AI/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and finally to the hypoeutectic with numerous primary AI dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of AI/Si FGM.展开更多
The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size le...The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.展开更多
The compression creep deformation of the high volume fraction of SiC particles reinforced AI-Mg-Si composite fabricated by pressure-less infiltration was investigated. The experimental results show that the creep stre...The compression creep deformation of the high volume fraction of SiC particles reinforced AI-Mg-Si composite fabricated by pressure-less infiltration was investigated. The experimental results show that the creep stress exponents are very high at temperatures of 673 K, 723 K and 773 K, and if taking the threshold stress into account, the true stress exponent of minimum creep strain rate is still approximately 5, although the volume fraction of reinforcements is very high. The creep strain rate in the high volume fraction reinforced aluminum alloy matrix composites is controlled by matrix lattice diffusion. It is found that the creep-strengthening effect of high volume fraction of silicon carbide particles is significant, although the particles do not form effective obstacles to dislocation motion.展开更多
The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix...The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.展开更多
To improve the wear and corrosion properties of AZ91D magnesium alloys,Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC.Th...To improve the wear and corrosion properties of AZ91D magnesium alloys,Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC.The wear and corrosion behaviours of the coatings were investigated.The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature.The corrosion resistance of the coatings was tested in 3.5%(mass fraction) NaCl solution.The coatings exhibit excellent wear resistance due to the recombined action of amorphous phase and different intermetallic compounds.The main wear mechanisms of the coatings and the AZ91D sample are different.The former is abrasive wear and the latter is adhesive wear.The coatings compared with AZ91D magnesium alloy also exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.展开更多
The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-...The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.展开更多
Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actu...Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.展开更多
An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composi...An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.展开更多
The results of experiments and simulations show that there is a turbulent flow in the molten aluminum and it is hard to be restrained in the thin tubule (diameter of 6 mm) when the electromagnetic body force is applie...The results of experiments and simulations show that there is a turbulent flow in the molten aluminum and it is hard to be restrained in the thin tubule (diameter of 6 mm) when the electromagnetic body force is applied. The electromagnetic elimination experimental results show that the flow has serious effect on the elimination of 5 μm alumina inclusions, but has little effect on the 30 μm and 100 μm primary silicon. The effects of the electromagnetic field and the turbulent flow on the electromagnetic elimination are discussed.展开更多
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the...A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model, the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam, but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases, i.e., with and without secondary electrons (SEs). Analysis indicates that the energy deposition of SEs accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic, but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover, both the energy distribution of BEs and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus, a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.展开更多
A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Tort is performed. The model based on mass conservation equations for electron and ion under diffusio...A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Tort is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Tort to 100 Tort. It is also shown that in the range of the gas pressure from 1 Tort to 100 Tort with the slower rate of varying gas pressure, higher density of plasma can be obtained.展开更多
In order to study the effect of the stirring flow on the grain diameter and solute concentration of hollow billet, the couple model of the two-phase solidification and electromagnetic field was built to simulate the s...In order to study the effect of the stirring flow on the grain diameter and solute concentration of hollow billet, the couple model of the two-phase solidification and electromagnetic field was built to simulate the solidification process of Sn-3.5%Pb hollow billet with the traveling magnetic field and rotating magnetic field. The effects of different kinds of flows on the temperature field, concentration field and grain diameter of molten metal during solidification were analysed. The results show that, there are different flow patterns in the molten metal induced by the traveling magnetic field and rotating magnetic field. Both flows can refine the grains in the hollow billet because of change of the temperature gradient and cooling rate of molten metal. The bigger the stirring velocity is,the smaller the grain diameter. Both flows can result in the macro-segregation in the hollow billet because of the non-homogeneous flows. The bigger the stirring velocity, the more serious the macro-segregation of the hollow billet. So, the stirring intensity should be controlled to acquire the high quality hollow billet.展开更多
We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of...We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.展开更多
Ni-Al2O3 nano-composite coatings were fabricated by sediment co-deposition (SCD) from Watt’s type electrolyte containing nano-Al2O3 particles without any additives. For comparison, Ni-Al2O3 nano-composite coatings we...Ni-Al2O3 nano-composite coatings were fabricated by sediment co-deposition (SCD) from Watt’s type electrolyte containing nano-Al2O3 particles without any additives. For comparison, Ni-Al2O3 nano-composite coatings were prepared by conventional electro-plating (CEP) under experimental conditions. Effects of process parameters, such as nano-Al2O3 concentration in plating solution, current density, stirring rate, and bath temperature, on nano-Al2O3 content in composite coatings were investigated. The distribution of elements in deposit, and the bonding strength between coating and substrate was analyzed by electron probe microanalyzer (EPMA) and auto-scratch apparatus, respectively. It is found that the nano-Al2O3 concentration in plating solution, current density and stirring rate are three main factors affecting the particles content in deposit, and played a key role in the formation of composite coatings. The nano-Al2O3 content in composite coatings increased with increasing of nano-Al2O3 concentration in plating solution, current density and stirring rate to reach a maximum value, and then reduced slightly. The contents of nano-Al2O3 particles in composite coatings by the SCD technique were higher than that by the CEP technique. The co-deposited nano-Al2O3 particles embedded uniformly in the Ni matrix. The coating was well adhesion with substrate. It is demonstrated that the SCD technique is an efficient approach for improving the nano-Al2O3 content in Ni-Al2O3 composite coatings.展开更多
The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continui...The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.展开更多
The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen...The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.展开更多
The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronge...The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronger the high magnetic fields, the more regular the alignment of Al6Mn precipitated phases. Al6Mn precipitated phases can generate oriented alignment and aggregation under high magnetic fields through the observation of the quenched microstructure of the Al-Mn alloy at different temperatures. Meanwhile, the number of Al6Mn phases increases continuously along with the increasing function time of high magnetic fields. X-ray diffraction also indicates that Al6Mn phases generate obvious tropism under high magnetic fields. The process of aggregation and growth of Al6Mn precipitated phases under the function of high magnetic fields after orientation were analyzed and discussed.展开更多
To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weig...To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change, mass loss, water uptake, etc. The results show that in dynamic system, significant mass loss begins until 10 d while mass loss does not begin until 30 d later, while weight-average molecular weight decreases observably at the beginning, and the appeasable mass loss happens in 20 d in static system, which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections, which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium, which make the hydrolytic cleavage of ester bonds inside specimen delayed.展开更多
In this paper a numerical simulation of a planar DC magnetron discharge is performed with the Particle-in Cell/Monte Carlo Collision (PIC/MCC) method. The magnetic field used in the simulation is calculated with fin...In this paper a numerical simulation of a planar DC magnetron discharge is performed with the Particle-in Cell/Monte Carlo Collision (PIC/MCC) method. The magnetic field used in the simulation is calculated with finite element method according to experimental configuration. The simulation is carried out under the condition of gas pressure of 0.665 Pa and voltage magnitude of 400V. Typical results such as the potential distribution, charged particle densities, the discharge current density and ion flux onto the target are calculated. The erosion profile from the simulation is compared with the experimental data. The maximum erosion position corresponds to the place where the magnetic field lines are parallel to the target surface.展开更多
Two thermomechanical coupled elastic-plastic finite element (FE) models were developed for predicting the 12-pass continuous rolling process of GCrl 5 rod and wire steel. The distances between stands in the proposed...Two thermomechanical coupled elastic-plastic finite element (FE) models were developed for predicting the 12-pass continuous rolling process of GCrl 5 rod and wire steel. The distances between stands in the proposed models were set according to the actual values, and the billets were shortened in the models to reduce the calculation time. To keep the continuity of simulation, a technique was developed to transfer temperature data between the meshes of different models in terms of nodal parameters by interpolation functions. The different process variables related to the rolling process, such as temperature, total equivalent plastic strain, equivalent plastic strain rate, and contact friction force, were analyzed. Also, the proposed models were applied to analyze the reason for the occurrence of an excessive spread in width. Meanwhile, it was also utilized to assess the influence of the roll diameter change on the simulated results such as temperature and rolling force. The simulated results of temperature are found to agree well with the measured results.展开更多
基金the National Natural Science Foundation of China(No.50474055)
文摘Functionally graded materials (FGM) have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare AI/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and finally to the hypoeutectic with numerous primary AI dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of AI/Si FGM.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.
文摘The compression creep deformation of the high volume fraction of SiC particles reinforced AI-Mg-Si composite fabricated by pressure-less infiltration was investigated. The experimental results show that the creep stress exponents are very high at temperatures of 673 K, 723 K and 773 K, and if taking the threshold stress into account, the true stress exponent of minimum creep strain rate is still approximately 5, although the volume fraction of reinforcements is very high. The creep strain rate in the high volume fraction reinforced aluminum alloy matrix composites is controlled by matrix lattice diffusion. It is found that the creep-strengthening effect of high volume fraction of silicon carbide particles is significant, although the particles do not form effective obstacles to dislocation motion.
基金supported by the National Natural Science Foundation of China under grant No. 10477006the Key Project of Chinese Ministry of Education undergrant No. 106055
文摘The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.
基金Project(AWPT08-10)supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,ChinaProject(mmlab0706)supported by the Open Fund of the State Key Laboratory of Materials Modification by Laser,Ion and Electron Beams in Dalian University of University,ChinaProject(0710908-05-K)supported by the Research Funds of the Guangxi Key Laboratory of Information Materials in Guilin University of Electronic Technology,China
文摘To improve the wear and corrosion properties of AZ91D magnesium alloys,Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC.The wear and corrosion behaviours of the coatings were investigated.The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature.The corrosion resistance of the coatings was tested in 3.5%(mass fraction) NaCl solution.The coatings exhibit excellent wear resistance due to the recombined action of amorphous phase and different intermetallic compounds.The main wear mechanisms of the coatings and the AZ91D sample are different.The former is abrasive wear and the latter is adhesive wear.The coatings compared with AZ91D magnesium alloy also exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.
基金Project(50872001) supported by the National Natural Science Foundation of ChinaProjects(KJ2007B132, KJ2009A006Z) supported by the Scientific Research Foundation of Education Department of Anhui Province, ChinaProject(XJ200907) supported by the Foundation of Construction of Quality Project of Anhui University, China
文摘The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.
文摘Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.
文摘An empirical formula for composition demixing analysis in cathodic arc ion plating using alloy target is established based on the concepts of average charged state and relative demixing parameter. The level of composition demixing effect is presented by demixing degree of one element. For binary constituent alloy target, the composition change trend in coating is discussed and the limit of demixing degree for each element is determined. The content of one element with higher average charged state gets larger in coating than in alloy target, at meantime, the content of one element with lower average charged state gets less. For each one of the two constituents, the less the atom percent in alloy target, the larger the difference of its contents between the coating and the target. For triple constituent alloy target, the content change of one element with moderate average charged state is discussed in detail. Its content in coating getting larger or less is determined by the combination result of the contents of the other two elements in alloy target. For a given content of the element with moderate average charged state in triple alloy target, the content deviation level of that element from coating to alloy target will be not larger than that using binary alloy target containing only that element and one of the two others. According to the wanted coating composition, the composition design of alloy target is easily deduced from the formula.
基金Projects(50474055, 50274018) supported by the National Natural Science Foundation of China Project(20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The results of experiments and simulations show that there is a turbulent flow in the molten aluminum and it is hard to be restrained in the thin tubule (diameter of 6 mm) when the electromagnetic body force is applied. The electromagnetic elimination experimental results show that the flow has serious effect on the elimination of 5 μm alumina inclusions, but has little effect on the 30 μm and 100 μm primary silicon. The effects of the electromagnetic field and the turbulent flow on the electromagnetic elimination are discussed.
文摘A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model, the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam, but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases, i.e., with and without secondary electrons (SEs). Analysis indicates that the energy deposition of SEs accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic, but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover, both the energy distribution of BEs and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus, a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40390155, 40228006, 10675029, and 10575018.
文摘A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Tort is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Tort to 100 Tort. It is also shown that in the range of the gas pressure from 1 Tort to 100 Tort with the slower rate of varying gas pressure, higher density of plasma can be obtained.
基金Project(50274017 50474055) supported by the National Natural Science Foundation of China+1 种基金Project(20052176) supported by Natural Science Foundation of Liaoning Province, ChinaProject supported by Homecoming Foundation of Ministry of Education, China
文摘In order to study the effect of the stirring flow on the grain diameter and solute concentration of hollow billet, the couple model of the two-phase solidification and electromagnetic field was built to simulate the solidification process of Sn-3.5%Pb hollow billet with the traveling magnetic field and rotating magnetic field. The effects of different kinds of flows on the temperature field, concentration field and grain diameter of molten metal during solidification were analysed. The results show that, there are different flow patterns in the molten metal induced by the traveling magnetic field and rotating magnetic field. Both flows can refine the grains in the hollow billet because of change of the temperature gradient and cooling rate of molten metal. The bigger the stirring velocity is,the smaller the grain diameter. Both flows can result in the macro-segregation in the hollow billet because of the non-homogeneous flows. The bigger the stirring velocity, the more serious the macro-segregation of the hollow billet. So, the stirring intensity should be controlled to acquire the high quality hollow billet.
基金Funded by the Natural Science Foundation of China (No. 50872001 and No. 50642038)the Scientific Research Foundation of Education Ministry of Anhui Province (No. 2005KJ224 and No. KJ2007B132)the Graduate Student Innovation Programs of Anhui University (No. 20072006)
文摘We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.
基金Supported by the National Natural Science Foundation of China (Grant No 50234020 and 50474055) and the of Northeastern University
文摘Ni-Al2O3 nano-composite coatings were fabricated by sediment co-deposition (SCD) from Watt’s type electrolyte containing nano-Al2O3 particles without any additives. For comparison, Ni-Al2O3 nano-composite coatings were prepared by conventional electro-plating (CEP) under experimental conditions. Effects of process parameters, such as nano-Al2O3 concentration in plating solution, current density, stirring rate, and bath temperature, on nano-Al2O3 content in composite coatings were investigated. The distribution of elements in deposit, and the bonding strength between coating and substrate was analyzed by electron probe microanalyzer (EPMA) and auto-scratch apparatus, respectively. It is found that the nano-Al2O3 concentration in plating solution, current density and stirring rate are three main factors affecting the particles content in deposit, and played a key role in the formation of composite coatings. The nano-Al2O3 content in composite coatings increased with increasing of nano-Al2O3 concentration in plating solution, current density and stirring rate to reach a maximum value, and then reduced slightly. The contents of nano-Al2O3 particles in composite coatings by the SCD technique were higher than that by the CEP technique. The co-deposited nano-Al2O3 particles embedded uniformly in the Ni matrix. The coating was well adhesion with substrate. It is demonstrated that the SCD technique is an efficient approach for improving the nano-Al2O3 content in Ni-Al2O3 composite coatings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50537020 and 50528707).
文摘The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.
文摘The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronger the high magnetic fields, the more regular the alignment of Al6Mn precipitated phases. Al6Mn precipitated phases can generate oriented alignment and aggregation under high magnetic fields through the observation of the quenched microstructure of the Al-Mn alloy at different temperatures. Meanwhile, the number of Al6Mn phases increases continuously along with the increasing function time of high magnetic fields. X-ray diffraction also indicates that Al6Mn phases generate obvious tropism under high magnetic fields. The process of aggregation and growth of Al6Mn precipitated phases under the function of high magnetic fields after orientation were analyzed and discussed.
基金Projects(2002AA326010 2004AA32G110) supported by the High-tech Research and Development Program of China Project ( 30470521) supported by the National Natural Science Foundation of China
文摘To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change, mass loss, water uptake, etc. The results show that in dynamic system, significant mass loss begins until 10 d while mass loss does not begin until 30 d later, while weight-average molecular weight decreases observably at the beginning, and the appeasable mass loss happens in 20 d in static system, which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections, which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium, which make the hydrolytic cleavage of ester bonds inside specimen delayed.
基金Project supported by the National Science Found for Distinguished Young Scholars of China (Grant No 50407015)
文摘In this paper a numerical simulation of a planar DC magnetron discharge is performed with the Particle-in Cell/Monte Carlo Collision (PIC/MCC) method. The magnetic field used in the simulation is calculated with finite element method according to experimental configuration. The simulation is carried out under the condition of gas pressure of 0.665 Pa and voltage magnitude of 400V. Typical results such as the potential distribution, charged particle densities, the discharge current density and ion flux onto the target are calculated. The erosion profile from the simulation is compared with the experimental data. The maximum erosion position corresponds to the place where the magnetic field lines are parallel to the target surface.
基金This study was supported by the Excellent Youth and Science & Technology Talent Foundation of Dalian (No.2001-122) and Dong-bei Special Steel Group.
文摘Two thermomechanical coupled elastic-plastic finite element (FE) models were developed for predicting the 12-pass continuous rolling process of GCrl 5 rod and wire steel. The distances between stands in the proposed models were set according to the actual values, and the billets were shortened in the models to reduce the calculation time. To keep the continuity of simulation, a technique was developed to transfer temperature data between the meshes of different models in terms of nodal parameters by interpolation functions. The different process variables related to the rolling process, such as temperature, total equivalent plastic strain, equivalent plastic strain rate, and contact friction force, were analyzed. Also, the proposed models were applied to analyze the reason for the occurrence of an excessive spread in width. Meanwhile, it was also utilized to assess the influence of the roll diameter change on the simulated results such as temperature and rolling force. The simulated results of temperature are found to agree well with the measured results.