Nodal line semimetal(NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-Ⅱ NLS means that these two crossing bands have the same sign in their slop...Nodal line semimetal(NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-Ⅱ NLS means that these two crossing bands have the same sign in their slopes along the radial direction of the loop, which requires that the crossing bands are either right-tilted or left-tilted at the same time. According to the theoretical prediction, Mg3Bi2 is an ideal candidate for studying the type-Ⅱ NLS by tuning its spin-orbit coupling(SOC). High-quality Mg3 Bi2 films are grown by molecular beam epitaxy(MBE). By in-situ angle resolved photoemission spectroscopy(ARPES), a pair of surface resonance bands around theГ point are clearly seen. This shows that Mg3Bi2 films grown by MBE are Mg(1)-terminated by comparing the ARPES spectra with the first principles calculations results. Moreover, the temperature dependent weak anti-localization effect in Mg3Bi2 films is observed under magneto-transport measurements, which shows clear two-dimensional(2 D) e-e scattering characteristics by fitting with the Hikami–Larkin–Nagaoka model. Therefore, by combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg3Bi2 is a semimetal with topological surface states. This paves the way for Mg3Bi2 to be used as an ideal material platform to study the exotic features of type-Ⅱ nodal line semimetals and the topological phase transition by tuning its SOC.展开更多
The solid state transformer(SST) can be viewed as an energy router in energy internet. This work presents sliding mode control(SMC) to improve dynamic state and steady state performance of a three-stage(rectifier stag...The solid state transformer(SST) can be viewed as an energy router in energy internet. This work presents sliding mode control(SMC) to improve dynamic state and steady state performance of a three-stage(rectifier stage, isolated stage and inverter stage) SST for energy internet. SMC with three-level hysteresis sliding functions is presented to control the input current of rectifier stage and output voltage of inverter stage to improve the robustness under external disturbance and parametric uncertainties and reduce the switching frequency. A modified feedback linearization technique using isolated stage simplified model is presented to achieve satisfactory regulation of output voltage of the isolated stage. The system is tested for steady state operation, reactive power control, dynamic load change and voltage sag simulations, respectively. The switching model of SST is implemented in Matlab/ Simulink to verify the SST control algorithms.展开更多
Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density mem- ory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanoc...Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density mem- ory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanocrossbar memory is limited, since the overhead of the reading circuits is in proportion with the size of the nanocrossbar component. In this paper, a multiplexed reading scheme is adopted as the foundation of the discussion. Through HSPICE simulation, we reanalyze scalability of the nanocrossbar memristor memory by investigating the impact of various circuit parameters on the output voltage swing as the memory scales to larger size. We find that multiplexed reading maintains sufficient noise margin in large size nanocrossbar memristor memory. In order to improve the scalability of the memory, memristors with nonlinear I-V characteristics and high LRS (low resistive state) resistance should be adopted.展开更多
We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variati...We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.展开更多
Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to co...Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.展开更多
With the development of online social networks,a special group of online users named organized posters(or Internet water army,Internet paid posters in some literatures) have fl ooded the social network communities. Th...With the development of online social networks,a special group of online users named organized posters(or Internet water army,Internet paid posters in some literatures) have fl ooded the social network communities. They are organized in groups to post with specific purposes and sometimes even confuse or mislead normal users.In this paper,we study the individual and group characteristics of organized posters. A classifier is constructed based on the individual and group characteristics to detect them. Extensive experimental results on three real datasets demonstrate that our method based on individual and group characteristics using SVM model(IGCSVM) is effective in detecting organized posters and better than existing methods. We take a first look at finding the promoters based on the detected organized posters of our IGCSVM method. Our experiments show that it is effective in detecting promoters.展开更多
Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite differ...Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite difference method, Fourier pseudospectral method and wavelet collocation method for spatial discretizations, a series of high accurate conservative algorithms are presented. The proposed algorithms can preserve the corresponding discrete charge and energy conservation laws exactly, which would guarantee their numerical stabilities during long time computations.Furthermore, several analogous multi-symplectic algorithms are constructed as comparison. Numerical experiments for the unstable plane waves will show the advantages of the proposed algorithms over long time and verify the theoretical analysis.展开更多
Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into accou...Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover,the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.展开更多
Memristive technology has been widely explored, due to its distinctive properties, such as nonvolatility, high density,versatility, and CMOS compatibility. For memristive devices, a general compact model is highly fav...Memristive technology has been widely explored, due to its distinctive properties, such as nonvolatility, high density,versatility, and CMOS compatibility. For memristive devices, a general compact model is highly favorable for the realization of its circuits and applications. In this paper, we propose a novel memristive model of TiOx-based devices, which considers the negative differential resistance(NDR) behavior. This model is physics-oriented and passes Linn's criteria. It not only exhibits sufficient accuracy(IV characteristics within 1.5% RMS), lower latency(below half the VTEAM model),and preferable generality compared to previous models, but also yields more precise predictions of long-term potentiation/depression(LTP/LTD). Finally, novel methods based on memristive models are proposed for gray sketching and edge detection applications. These methods avoid complex nonlinear functions required by their original counterparts. When the proposed model is utilized in these methods, they achieve increased contrast ratio and accuracy(for gray sketching and edge detection, respectively) compared to the Simmons model. Our results suggest a memristor-based network is a promising candidate to tackle the existing inefficiencies in traditional image processing methods.展开更多
Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. 3 loss in the final key for the Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of inc...Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. 3 loss in the final key for the Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of incapability of identifying two successive detection events by a single photon detector. Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD. The polarization states are used to generate the time bins and the phase-encoding states. The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site. We show the feasibility of our scheme with a proof-of-principle experimental demonstration. The phase reference frame is rotated extremely slowly with only passive stabilization measures. The quantum bit error rate can reach 0.8% in the Z-basis and 26.2% in the X-basis.展开更多
A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an o...A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.展开更多
With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of dat...With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model.展开更多
The simulation is an important means of performance evaluation of the computer architecture. Nowadays, the serial simulation of general purpose graphics processing unit(GPGPU) architecture is the main bottleneck for t...The simulation is an important means of performance evaluation of the computer architecture. Nowadays, the serial simulation of general purpose graphics processing unit(GPGPU) architecture is the main bottleneck for the simulation speed. To address this issue, we propose the intra-kernel parallelization on a multicore processor and the inter-kernel parallelization on a multiple-machine platform. We apply these two methods to the GPGPU-sim simulator. The intra-kernel parallelization method firstly parallelizes the serial simulation of multiple compute units in one cycle. Then it parallelizes the timing and functional simulation to reduce the performance loss caused by the synchronization between different compute units. The inter-kernel parallelization method divides multiple kernels of a CUDA program into several groups and distributes these groups across multiple simulation hosts to perform the simulation. Experimental results show that the intra-kernel parallelization method achieves a speed-up of up to 12 with a maximum error rate of 0.009 4% on a 32-core machine, and the inter-kernel parallelization method can accelerate the simulation by a factor of up to 3.9 with a maximum error rate of 0.11% on four simulation hosts. The orthogonality between these two methods allows us to combine them together on multiple multi-core hosts to get further performance improvements.展开更多
With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on ...With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms.We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models.Finally,simulations are presented.We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms,which are applied to explain their resistive switchings.展开更多
We theoretically investigate an enhanced electromagnetically induced transparency (EIT) cooling method by introduc- ing a high finesse cavity. We find that the quantum destructive interference that is induced by the...We theoretically investigate an enhanced electromagnetically induced transparency (EIT) cooling method by introduc- ing a high finesse cavity. We find that the quantum destructive interference that is induced by the EIT effect and the cavity coupling can eliminate all of the heating effects in the cooling process by choosing appropriate parameters. Compared with the EIT cooling scheme, a lower final temperature can be obtained under the same conditions in our scheme.展开更多
Unipolar memristive devices are an important kind of resistive switching devices. However, few circuit models of them have been proposed. In this paper, we propose the SPICE modeling of flux-controlled unipolar memris...Unipolar memristive devices are an important kind of resistive switching devices. However, few circuit models of them have been proposed. In this paper, we propose the SPICE modeling of flux-controlled unipolar memristive devices based on the memristance versus state map. Using our model, the flux thresholds, ON and OFF resistance, and compliance current can easily be set as model parameters. We simulate the model in HSPICE using model parameters abstracted from real devices, and the simulation results show that the proposed model caters to the real device data very well, thus demonstrating that the model is correct. Using the same modeling methodology, the SPICE model of charge-controlled unipolar memristive devices could also be developed. The proposed model could be used to model resistive memory cells, logical gates as well as synapses in artificial neural networks.展开更多
We experimentally engineer a high-spectral-purity single-photon source using a single-interferometer-coupled silicon microring. By the reconfiguration of the interferometer, different coupling conditions can be obtain...We experimentally engineer a high-spectral-purity single-photon source using a single-interferometer-coupled silicon microring. By the reconfiguration of the interferometer, different coupling conditions can be obtained, corresponding to different quality factors for the pump and signal/idler. The ratio between the quality factor of the pump and signal/idler ranges from 0.29 to 2.57. By constructing the signal–idler joint spectral intensity, we intuitively demonstrate the spectral correlation of the signal and idler. As the ratio between the quality factor of the pump and signal/idler increases, the spectral correlation of the signal and idler decreases, i.e., the spectral purity of the signal/idler photons increases. Furthermore,time-integrated second-order correlation of the signal photons is measured, giving a value up to 94.95 ± 3.46%. Such high-spectral-purity photons will improve the visibility of quantum interference and facilitate the development of on-chip quantum information processing.展开更多
The adiabatic quantum computation(AQC)has been proven to be equivalent to the standard circuit model.Conventionally,AQC evolves from the initial Hamiltonian which has a uniform equal superposition of the computational...The adiabatic quantum computation(AQC)has been proven to be equivalent to the standard circuit model.Conventionally,AQC evolves from the initial Hamiltonian which has a uniform equal superposition of the computational basis to the final Hamiltonian whose ground state encodes the solution to a computation problem.We propose an alternative approach to construct the initial Hamiltonian of the AQC which has an unequal superposition of the possible solutions to the problem and show that an educated guess can improve the performance of AQC.展开更多
The dynamical decoupling(DD) method is widely adopted to preserve coherence in different quantum systems. In the case of ideal pulses, its effects on the suppression of noise can be analytically described by the mathe...The dynamical decoupling(DD) method is widely adopted to preserve coherence in different quantum systems. In the case of ideal pulses, its effects on the suppression of noise can be analytically described by the mathematical form of filter function. However, in practical experiments, the unavoidable pulse errors limit the efficiency of DD. In this paper,we study the effects of imperfect pulses on DD efficiency based on quantum trajectories. By directly generating a pseudo noise sequence correlated in time, we can explore the performance of DD with different pulse errors in the typical noise environment. It shows that, for the typical 1/f noise environment, the phase error of operational pulses severely affects the performance of noise suppression, while the detuning and intensity errors have less influence. Also, we get the thresholds of these errors for efficient DD under the given experimental conditions. Our method can be widely applied to guide practical DD experimental implementation.展开更多
We propose a high-order conservative method for the nonlinear Sehodinger/Gross-Pitaevskii equation with time- varying coefficients in modeling Bose Einstein condensation (BEC). This scheme combined with the sixth-or...We propose a high-order conservative method for the nonlinear Sehodinger/Gross-Pitaevskii equation with time- varying coefficients in modeling Bose Einstein condensation (BEC). This scheme combined with the sixth-order compact finite difference method and the fourth-order average vector field method, finely describes the condensate wave function and physical characteristics in some small potential wells. Numerical experiments are presented to demonstrate that our numerical scheme is efficient by the comparison with the Fourier pseudo-spectral method. Moreover, it preserves several conservation laws well and even exactly under some specific conditions.展开更多
基金Supported by the Science Challenge Project under Grant No TZ2016004the Opening Foundation of State Key Laboratory of High Performance Computing under Grant No 201601-02+4 种基金the Foundation of President of CAEP under Grant No 201501040the Natural Science Foundation of Hunan Province under Grant No 2016JJ1021the National Basic Research Program of China under Grant Nos 2015CB921303 and 2012YQ13012508the General Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G17the Youth Talent Lifting Project under Grant No 17-JCJQ-QT-004
文摘Nodal line semimetal(NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-Ⅱ NLS means that these two crossing bands have the same sign in their slopes along the radial direction of the loop, which requires that the crossing bands are either right-tilted or left-tilted at the same time. According to the theoretical prediction, Mg3Bi2 is an ideal candidate for studying the type-Ⅱ NLS by tuning its spin-orbit coupling(SOC). High-quality Mg3 Bi2 films are grown by molecular beam epitaxy(MBE). By in-situ angle resolved photoemission spectroscopy(ARPES), a pair of surface resonance bands around theГ point are clearly seen. This shows that Mg3Bi2 films grown by MBE are Mg(1)-terminated by comparing the ARPES spectra with the first principles calculations results. Moreover, the temperature dependent weak anti-localization effect in Mg3Bi2 films is observed under magneto-transport measurements, which shows clear two-dimensional(2 D) e-e scattering characteristics by fitting with the Hikami–Larkin–Nagaoka model. Therefore, by combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg3Bi2 is a semimetal with topological surface states. This paves the way for Mg3Bi2 to be used as an ideal material platform to study the exotic features of type-Ⅱ nodal line semimetals and the topological phase transition by tuning its SOC.
基金Projects(61403404,71571187)supported by the National Natural Science Foundation of China
文摘The solid state transformer(SST) can be viewed as an energy router in energy internet. This work presents sliding mode control(SMC) to improve dynamic state and steady state performance of a three-stage(rectifier stage, isolated stage and inverter stage) SST for energy internet. SMC with three-level hysteresis sliding functions is presented to control the input current of rectifier stage and output voltage of inverter stage to improve the robustness under external disturbance and parametric uncertainties and reduce the switching frequency. A modified feedback linearization technique using isolated stage simplified model is presented to achieve satisfactory regulation of output voltage of the isolated stage. The system is tested for steady state operation, reactive power control, dynamic load change and voltage sag simulations, respectively. The switching model of SST is implemented in Matlab/ Simulink to verify the SST control algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant No.61003082)
文摘Nanocrossbar is a potential memory architecture to integrate memristor to achieve large scale and high density mem- ory. However, based on the currently widely-adopted parallel reading scheme, scalability of the nanocrossbar memory is limited, since the overhead of the reading circuits is in proportion with the size of the nanocrossbar component. In this paper, a multiplexed reading scheme is adopted as the foundation of the discussion. Through HSPICE simulation, we reanalyze scalability of the nanocrossbar memristor memory by investigating the impact of various circuit parameters on the output voltage swing as the memory scales to larger size. We find that multiplexed reading maintains sufficient noise margin in large size nanocrossbar memristor memory. In order to improve the scalability of the memory, memristors with nonlinear I-V characteristics and high LRS (low resistive state) resistance should be adopted.
基金Project supported by the National Key R&D Program of China(Grant No.2019YFA0705000)Leading-edge Technology Program of Jiangsu Natural Science Foundation,China(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861,11690031,11974178,and 11627810).
文摘We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric downconversion in the periodically-poled lithium niobate on insulator(LNOI)waveguide.We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum,such as narrowing,broadening,and splitting.We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth.Our study may promote the development of on-chip photon sources in the LNOI platform,as well as opens up a way to engineer photon frequency state.
基金Project(61170049) supported by the National Natural Science Foundation of ChinaProject(2012AA010903) supported by the National High Technology Research and Development Program of China
文摘Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.
基金supported by 973 Program of China(Grant No.2013CB329601, 2013CB329602,2013CB329604)NSFC of China(Grant No.60933005,91124002)+1 种基金863 Program of China(Grant No.2012AA01A401, 2012AA01A402)National Key Technology RD Program of China(Grant No.2012BAH38B04, 2012BAH38B06)
文摘With the development of online social networks,a special group of online users named organized posters(or Internet water army,Internet paid posters in some literatures) have fl ooded the social network communities. They are organized in groups to post with specific purposes and sometimes even confuse or mislead normal users.In this paper,we study the individual and group characteristics of organized posters. A classifier is constructed based on the individual and group characteristics to detect them. Extensive experimental results on three real datasets demonstrate that our method based on individual and group characteristics using SVM model(IGCSVM) is effective in detecting organized posters and better than existing methods. We take a first look at finding the promoters based on the detected organized posters of our IGCSVM method. Our experiments show that it is effective in detecting promoters.
基金Supported by the National Natural Science Foundation of China under Grant No.91130013Hunan Provincial Innovation Foundation under Grant No.CX2012B010+1 种基金the Innovation Fund of National University of Defense Technology under Grant No.B120205the Open Foundation of State Key Laboratory
文摘Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite difference method, Fourier pseudospectral method and wavelet collocation method for spatial discretizations, a series of high accurate conservative algorithms are presented. The proposed algorithms can preserve the corresponding discrete charge and energy conservation laws exactly, which would guarantee their numerical stabilities during long time computations.Furthermore, several analogous multi-symplectic algorithms are constructed as comparison. Numerical experiments for the unstable plane waves will show the advantages of the proposed algorithms over long time and verify the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China(Grant No.61332003)High Performance Computing Laboratory,China(Grant No.201501-02)
文摘Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover,the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61332003 and 61303068)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3024)
文摘Memristive technology has been widely explored, due to its distinctive properties, such as nonvolatility, high density,versatility, and CMOS compatibility. For memristive devices, a general compact model is highly favorable for the realization of its circuits and applications. In this paper, we propose a novel memristive model of TiOx-based devices, which considers the negative differential resistance(NDR) behavior. This model is physics-oriented and passes Linn's criteria. It not only exhibits sufficient accuracy(IV characteristics within 1.5% RMS), lower latency(below half the VTEAM model),and preferable generality compared to previous models, but also yields more precise predictions of long-term potentiation/depression(LTP/LTD). Finally, novel methods based on memristive models are proposed for gray sketching and edge detection applications. These methods avoid complex nonlinear functions required by their original counterparts. When the proposed model is utilized in these methods, they achieve increased contrast ratio and accuracy(for gray sketching and edge detection, respectively) compared to the Simmons model. Our results suggest a memristor-based network is a promising candidate to tackle the existing inefficiencies in traditional image processing methods.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304391,11674397 and 61671455the Program for New Century Excellent Talents in University of China
文摘Measurement-device-independent quantum key distribution (MDI-QKD) eliminates all loopholes on detection. 3 loss in the final key for the Previous experiments of time-bin phase-encoding MDI-QKD allow a factor of incapability of identifying two successive detection events by a single photon detector. Here we propose a new scheme to realize the time-bin phase-encoding MDI-QKD. The polarization states are used to generate the time bins and the phase-encoding states. The factor of loss in the final key is eliminated by using four single photon detectors at the measurement site. We show the feasibility of our scheme with a proof-of-principle experimental demonstration. The phase reference frame is rotated extremely slowly with only passive stabilization measures. The quantum bit error rate can reach 0.8% in the Z-basis and 26.2% in the X-basis.
基金Project supported by the National Natural Science Foundation of China(Nos.11601517,11502296,61772542,and 61561146395)the Basic Research Foundation of National University of Defense Technology(No.ZDYYJ-CYJ20140101)
文摘A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.60921062)
文摘With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model.
基金the National Natural Science Foundation of China(Nos.61572508,61272144,61303065and 61202121)the National High Technology Research and Development Program(863)of China(No.2012AA010905)+2 种基金the Research Project of National University of Defense Technology(No.JC13-06-02)the Doctoral Fund of Ministry of Education of China(No.20134307120028)the Research Fund for the Doctoral Program of Higher Education of China(No.20114307120013)
文摘The simulation is an important means of performance evaluation of the computer architecture. Nowadays, the serial simulation of general purpose graphics processing unit(GPGPU) architecture is the main bottleneck for the simulation speed. To address this issue, we propose the intra-kernel parallelization on a multicore processor and the inter-kernel parallelization on a multiple-machine platform. We apply these two methods to the GPGPU-sim simulator. The intra-kernel parallelization method firstly parallelizes the serial simulation of multiple compute units in one cycle. Then it parallelizes the timing and functional simulation to reduce the performance loss caused by the synchronization between different compute units. The inter-kernel parallelization method divides multiple kernels of a CUDA program into several groups and distributes these groups across multiple simulation hosts to perform the simulation. Experimental results show that the intra-kernel parallelization method achieves a speed-up of up to 12 with a maximum error rate of 0.009 4% on a 32-core machine, and the inter-kernel parallelization method can accelerate the simulation by a factor of up to 3.9 with a maximum error rate of 0.11% on four simulation hosts. The orthogonality between these two methods allows us to combine them together on multiple multi-core hosts to get further performance improvements.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60921062)
文摘With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms.We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models.Finally,simulations are presented.We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms,which are applied to explain their resistive switchings.
基金supported by the National Natural Science Foundation of China(Grant Nos.11304387 and 61205108)
文摘We theoretically investigate an enhanced electromagnetically induced transparency (EIT) cooling method by introduc- ing a high finesse cavity. We find that the quantum destructive interference that is induced by the EIT effect and the cavity coupling can eliminate all of the heating effects in the cooling process by choosing appropriate parameters. Compared with the EIT cooling scheme, a lower final temperature can be obtained under the same conditions in our scheme.
基金the National Natural Science Foundation of China(Grant Nos.60921062,61003082,and 61272146)
文摘Unipolar memristive devices are an important kind of resistive switching devices. However, few circuit models of them have been proposed. In this paper, we propose the SPICE modeling of flux-controlled unipolar memristive devices based on the memristance versus state map. Using our model, the flux thresholds, ON and OFF resistance, and compliance current can easily be set as model parameters. We simulate the model in HSPICE using model parameters abstracted from real devices, and the simulation results show that the proposed model caters to the real device data very well, thus demonstrating that the model is correct. Using the same modeling methodology, the SPICE model of charge-controlled unipolar memristive devices could also be developed. The proposed model could be used to model resistive memory cells, logical gates as well as synapses in artificial neural networks.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2019YFA0308700 and 2017YFA0303700)the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology)。
文摘We experimentally engineer a high-spectral-purity single-photon source using a single-interferometer-coupled silicon microring. By the reconfiguration of the interferometer, different coupling conditions can be obtained, corresponding to different quality factors for the pump and signal/idler. The ratio between the quality factor of the pump and signal/idler ranges from 0.29 to 2.57. By constructing the signal–idler joint spectral intensity, we intuitively demonstrate the spectral correlation of the signal and idler. As the ratio between the quality factor of the pump and signal/idler increases, the spectral correlation of the signal and idler decreases, i.e., the spectral purity of the signal/idler photons increases. Furthermore,time-integrated second-order correlation of the signal photons is measured, giving a value up to 94.95 ± 3.46%. Such high-spectral-purity photons will improve the visibility of quantum interference and facilitate the development of on-chip quantum information processing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174370 and 61205108.
文摘The adiabatic quantum computation(AQC)has been proven to be equivalent to the standard circuit model.Conventionally,AQC evolves from the initial Hamiltonian which has a uniform equal superposition of the computational basis to the final Hamiltonian whose ground state encodes the solution to a computation problem.We propose an alternative approach to construct the initial Hamiltonian of the AQC which has an unequal superposition of the possible solutions to the problem and show that an educated guess can improve the performance of AQC.
基金Project supported by the National Basic Research Program of China(Grant No.2016YFA0301903)the National Natural Science Foundation of China(Grant Nos.11174370,11304387,61632021,11305262,and 61205108)the Research Plan Project of the National University of Defense Technology(Grant No.ZK16-03-04)
文摘The dynamical decoupling(DD) method is widely adopted to preserve coherence in different quantum systems. In the case of ideal pulses, its effects on the suppression of noise can be analytically described by the mathematical form of filter function. However, in practical experiments, the unavoidable pulse errors limit the efficiency of DD. In this paper,we study the effects of imperfect pulses on DD efficiency based on quantum trajectories. By directly generating a pseudo noise sequence correlated in time, we can explore the performance of DD with different pulse errors in the typical noise environment. It shows that, for the typical 1/f noise environment, the phase error of operational pulses severely affects the performance of noise suppression, while the detuning and intensity errors have less influence. Also, we get the thresholds of these errors for efficient DD under the given experimental conditions. Our method can be widely applied to guide practical DD experimental implementation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11571366 and 11501570the Open Foundation of State Key Laboratory of High Performance Computing of China+1 种基金the Research Fund of National University of Defense Technology under Grant No JC15-02-02the Fund from HPCL
文摘We propose a high-order conservative method for the nonlinear Sehodinger/Gross-Pitaevskii equation with time- varying coefficients in modeling Bose Einstein condensation (BEC). This scheme combined with the sixth-order compact finite difference method and the fourth-order average vector field method, finely describes the condensate wave function and physical characteristics in some small potential wells. Numerical experiments are presented to demonstrate that our numerical scheme is efficient by the comparison with the Fourier pseudo-spectral method. Moreover, it preserves several conservation laws well and even exactly under some specific conditions.