期刊文献+
共找到166篇文章
< 1 2 9 >
每页显示 20 50 100
Atomistic investigation of dislocation mechanism in orientation effect of θʹ precipitates in the stress-aged Al-Cu single crystal
1
作者 LI Jun-jie LI Guang +3 位作者 GAO Yuan ZHOU Hua ZHANG Si-ping GUO Xiao-bin 《Journal of Central South University》 2025年第3期789-805,共17页
The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stres... The orientation effect of θʹ precipitates in stress-aged Al-Cu alloys has ambiguous interpretations. One view is that θʹ precipitates prefer to grow on the habit planes perpendicular to the applied compressive stress, while the other view suggests growth on habit planes parallel to the applied stress. In this study, stress-aged Al-4 wt.%Cu single crystal was sampled from three different <100>Al zone axes to observe the distribution of θʹ precipitates. A hybrid Monte-Carlo/ molecular dynamics simulations were used to investigate the orientation effect of θʹ precipitates. The simulation results are consistent with experimental observations and indicate that θʹ precipitates prefer to grow on the habit planes that are parallel to the direction of the applied compressive stress, not along the planes perpendicular to it. It is also found that 1/2<110> perfect dislocations are generated as θʹ precipitates plates grow thicker, and the reaction of 1/2<110> perfect dislocations decomposing into 1/6<112> Shockley dislocations lead to an increase in the length of θʹ precipitates. The former does not enhance the orientation effect, whereas the latter leads to a more significant orientation effect. Additionally, the degree of the orientation effect of θʹ precipitates is determined by the reduction of 1/2<110> dislocations with a positive correlation between them. 展开更多
关键词 stress aging θʹ precipitates dislocations molecular dynamics simulations
在线阅读 下载PDF
Enhanced mechanical properties of lamellar Cu/Al composites processed via high-temperature accumulative roll bonding 被引量:18
2
作者 Lin WANG Qing-lin DU +3 位作者 Chang LI Xiao-hui CUI Xing ZHAO Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1621-1630,共10页
Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 a... Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively. 展开更多
关键词 diffusion layer Cu/Al multilayers accumulative roll bonding rolling temperature INTERMETALLICS mechanical properties
在线阅读 下载PDF
Calculation and experimental study on heating temperature field of super-high strength aluminum alloy thick plate 被引量:5
3
作者 Shi-tong FAN Yun-lai DENG +1 位作者 Jin ZHANG Xiao-bin GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2415-2422,共8页
Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering applic... Stepped heating treatment has been applied to aluminum alloy thick plate to improve the mechanical performance and corrosion resistance.Accurate temperature control of the plate is the difficulty in engineering application.The heating process,the calculation of surface heat transfer coefficient and the accurate temperature control method were studied based on measured heating temperature for the large-size thick plate.The results show that,the temperature difference between the surface and center of the thick plate is small.Based on the temperature uniformity,the surface heat transfer coefficient was calculated,and it is constant below300°C,but grows greatly over300°C.Consequently,a lumped parameter method(LPM)was developed to predict the plate temperature.A stepped solution treatment was designed by using LPM,and verified by finite element method(FEM)and experiments.Temperature curves calculated by LPM and FEM agree well with the experimental data,and the LPM is more convenient in engineering application. 展开更多
关键词 lumped parameter method surface heat transfer coefficient temperature field aluminum alloy thick plate
在线阅读 下载PDF
Dipping Process Characteristics Based on Image Processing of Pictures Captured by High-speed Cameras 被引量:3
4
作者 Junhui Li Yang Xia +3 位作者 Wei Wang Fuliang Wang Wei Zhang Wenhui Zhu 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期1-11,共11页
The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process base... The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu's method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ≥0.2 cm s-1. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s-1. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80–90 ms when dipping speed is from 1.6 to 4.0 cm s-1. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ≥55 ms. 展开更多
关键词 Dipping acceleration Dipping speed Dipping time VISCOSITY Image processing
在线阅读 下载PDF
Preparation of high-mechanical-property medium-entropy CrCoNi alloy by asymmetric cryorolling 被引量:4
5
作者 Yu-ze WU Zhao-yang ZHANG +5 位作者 Juan LIU Charlie KONG Yu WANG Puneet TANDON Alexander PESIN Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1559-1574,共16页
In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were... In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility. 展开更多
关键词 medium entropy alloy heterogeneous structure ANNEALING mechanical properties asymmetric cryorolling
在线阅读 下载PDF
Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling 被引量:3
6
作者 Juan Liu Yuze Wu +5 位作者 Lin Wang Hui Wang Charlie Kong Alexander Pesin Alexander PZhilyaev Hailiang Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第6期871-880,共10页
Sandwich-like Al/Ti/Al-laminated composites have many advantages such as low density and high specific strength with value in mechanical manufacturing and aerospace engineering. Here, Al/Ti/Al-laminated composites wer... Sandwich-like Al/Ti/Al-laminated composites have many advantages such as low density and high specific strength with value in mechanical manufacturing and aerospace engineering. Here, Al/Ti/Al-laminated composites were fabricated by hot roll bonding and subsequent processes: cryorolling(-190 ℃ and-100 ℃), cold rolling(25 ℃), and hot rolling(300 ℃). Their bonding strength and mechanical properties were then studied by an Autograph AGS-X universal electronic testing machine. The results show that cryorolling can improve the interface bonding strength and tensile strength of Al/Ti/Allaminated composites. For the Al/Ti/Al-laminated composites subjected to cryorolling at-100 ℃, they have the highest strength near 260 MPa—this is 48 MPa and 41 MPa higher than the laminated composites subjected to cold and hot rolling, respectively. These results also show the strongest peeling strength. Finally, the mechanisms of the enhancement of bonding strength and mechanical properties of Al/Ti/Al-laminated composites subjected to cryorolling were mainly discussed. 展开更多
关键词 Laminated composites CRYOROLLING Bonding strength Peeling strength Mechanical property Bonding mechanism
原文传递
Effect of high pressure torsion process on the microhardness,microstructure and tribological property of Ti6Al4V alloy 被引量:3
7
作者 Guanyu Deng Xing Zhao +6 位作者 Lihong Su Peitang Wei Liang Zhang Lihua Zhan Yan Chong Hongtao Zhu Nobuhiro Tsuji 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第35期183-195,共13页
In the present study,a fully lamellar Ti6Al4V alloy was severely deformed by high pressure torsion(HPT)process under a pressure of 7.5 GPa up to 10 revolutions.Experimental results revealed that the microhardness of T... In the present study,a fully lamellar Ti6Al4V alloy was severely deformed by high pressure torsion(HPT)process under a pressure of 7.5 GPa up to 10 revolutions.Experimental results revealed that the microhardness of Ti6Al4V was increased remarkably by about~41%and saturated at about 432 Hv after the HPT process.A relatively uniform bulk nanostructured Ti6Al4V alloy with an average grain size of about52.7 nm was obtained eventually,and no obvious formation of metastableωphase was detected by XRD analysis.For the first time,the tribological properties of the HPT processed Ti6Al4V alloy were investigated by a ball-on-disc test at room temperature under a dry condition.It was found that HPT process had a great influence on the friction and wear behaviors of Ti6Al4V alloy.With increasing the number of HPT revolutions,both friction coefficient and specific wear rate were obviously decreased due to the reduction of abrasion and adhesion wears.After being deformed by 10 HPT revolutions,the friction coefficient was reduced from about 0.49 to 0.37,and the specific wear rate was reduced by about 48%.The observations in this study indicated that HPT processed Ti6Al4V alloys had good potential in structural applications owing to their greatly improved mechanical and tribological properties. 展开更多
关键词 Severe plastic deformation High pressure torsion UFG microstructure Mechanical property Friction and wear Ti6Al4V alloy
原文传递
Theoretical analysis of effect of solid phase on cavitation performance of deep-sea mining pump 被引量:2
8
作者 XU Hai-Liang XU Cong WU Bo 《Journal of Chongqing University》 CAS 2018年第2期49-54,共6页
In view of the present situation of low cavitation performance of deep-sea mining slurry pump, the effect of solid phase on the cavitation performance of deep-sea mining pump is analyzed theoretically. The relationshi... In view of the present situation of low cavitation performance of deep-sea mining slurry pump, the effect of solid phase on the cavitation performance of deep-sea mining pump is analyzed theoretically. The relationship between gas and liquid phases are established by cavitation nucleon theory and mass energy equation as well as solid phase and liquid phase, and then we explored the relationship between gas phase and solid phase. The results show that the critical bubble radius and solid-phase concentration flow rate during the cavitation can be related to the liquid pressure. Eq.(19) show that the larger the solid particle concentration and the solid phase flow, the earlier the cavitation will occur, and pump anti-cavitation performance will decline. 展开更多
关键词 DEEP-SEA mining PUMP SOLID-LIQUID TWO-PHASE flow CAVITATION theoretical analysis
在线阅读 下载PDF
Effect of double ageing on performance and establishment of prediction model for 6005 aluminum alloy 被引量:2
9
作者 WANG Xu-cheng HUANG Yuan-chun +2 位作者 ZHANG Li-hua ZHANG Yun HUANG Shi-ta 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期973-985,共13页
In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compa... In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model. 展开更多
关键词 Al alloy heat treatment model mechanical performance strengthening mechanism
在线阅读 下载PDF
Microstructure evolution of AA5052 joint failure process and mechanical performance after reconditioning with tubular rivet 被引量:2
10
作者 Xiao-qiang REN Chao CHEN +2 位作者 Xiang-kun RAN Yu-xiang LI Xin-gang ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3380-3393,共14页
To extend the service life of the clinched joint,a reconditioning process conducted with an additional tubular rivet was proposed in this work.Different reconditioning forces were employed to produce dissimilar recond... To extend the service life of the clinched joint,a reconditioning process conducted with an additional tubular rivet was proposed in this work.Different reconditioning forces were employed to produce dissimilar reconditioned joints by experimental method.The experimental results indicated that the neck fracture was the common failure mode of both original clinched and reconditioned joints.Compared with the original clinched joint,the shearing strength of the reconditioned joint produced by a reconditioning force of 40 kN increased from 1810.5 to 1986.47 N,and the energy absorption increased from 2.34 to 3.46 J.The range of effective reconditioning force was from 35 to 40 kN and 40 kN was the best choice for reconditioning the AA5052 failed joints.The mechanical properties of the reconditioned joints are obviously better than those of the original clinched joints,which fully demonstrates that the reconditioning method proposed in this work has a broad prospect of industrial application. 展开更多
关键词 mechanical reconditioning clinched joining tubular rivet failure mode
在线阅读 下载PDF
A comprehensive research on wear resistance of GH4169 superalloy in longitudinal-torsional ultrasonic vibration side milling with tool wear and surface quality 被引量:6
11
作者 Baoqi CHANG Zhaoxi YI +2 位作者 Fen ZHANG Lian DUAN Ji-an DUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期556-573,共18页
To improve the service and machining performance of the workpiece, the tool wear mechanisms, surface machining quality, and wear resistance in conventional side milling(CSM)and longitudinal-torsional ultrasonic vibrat... To improve the service and machining performance of the workpiece, the tool wear mechanisms, surface machining quality, and wear resistance in conventional side milling(CSM)and longitudinal-torsional ultrasonic vibration side milling(LTUVSM) of GH4169 superalloy at different cutting lengths are investigated systematically. Tool wear mechanisms are revealed and the correlation between machined surface quality with tool wear is analyzed correspondingly. Tool wear patterns mainly include adhesive wear, diffusion wear, abrasive wear, and chipping sticking.Better surface quality is achieved in LTUVSM due to a maximum reduction of flank wear bandwidth and wear rate by 71.9% and 71.5%, respectively, compared to CSM. The friction coefficient,initial wear stage time, and wear volume of dry sliding wear were measured to evaluate the workpiece wear resistance. The maximum reductions in friction coefficient and wear volume in LTUVSM are 18.2% and 15.8% compared to CSM. The regular ultrasonic vibration textures suppress the friction and the growth of contact nodes in the contact area, decreasing the degree of surface wear, which is demonstrated by a 38.8% increase in initial wear stage time compared to CSM.In conclusion, the workpiece in LTUVSM exhibits higher wear resistance because of the improvement of tool wear and the guarantee of surface quality. 展开更多
关键词 Dry sliding wear Surface quality Tool wear Ultrasonic vibration Wear resistance
原文传递
Achieving High Strength and Tensile Ductility in Pure Nickel by Cryorolling with Subsequent Low-Temperature Short-Time Annealing 被引量:1
12
作者 Zhide Li Hao Gu +2 位作者 Kaiguang Luo Charlie Kong Hailiang Yu 《Engineering》 SCIE EI CAS CSCD 2024年第2期190-203,共14页
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel... Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes. 展开更多
关键词 CRYOROLLING ANNEALING NICKEL Strain hardening DUCTILITY
在线阅读 下载PDF
Microstructure and mechanical properties of Al-6.02Zn-1.94Mg alloy at higher solution treatment temperature
13
作者 NIE Chang-chang HUANG Yuan-chun +1 位作者 SHAO Hong-bang WEN Jin-chuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期937-949,共13页
The effects of solution treatment temperature and holding time on the microstructure and mechanical properties of extruded Al-6.02 wt.%Zn-1.94 wt.%Mg alloy were investigated by differential scanning calorimetry(DSC),o... The effects of solution treatment temperature and holding time on the microstructure and mechanical properties of extruded Al-6.02 wt.%Zn-1.94 wt.%Mg alloy were investigated by differential scanning calorimetry(DSC),optical microscopy(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD), and tensile test. The results showed that the optimum solution treatment process for the alloy was 470 ℃, 2 h. The tensile strength, yield strength,and elongation of the samples after the aging treatment at 120℃ for 24 h were 486 MPa, 431 MPa, and 14.8%,respectively. The alloy produced more copious recrystallization with the augment of solution temperature and the extension of holding time. While the second phase of η(MgZn_(2)), and T(AlZnMgCu) in the matrix was not fully re-dissolved under the treatment condition of lower temperature or shorter holding time. Interestingly, the Zr aggregation was observed in the samples treated at 510 ℃ for 2 h, which led to the growth of the second phase particles and the increase of their area fraction. 展开更多
关键词 MICROSTRUCTURE solution treatment second phase RECRYSTALLIZATION AGGREGATION
在线阅读 下载PDF
Synergistic effect of orientation and temperature on slip behavior and precipitation behavior of Al−Cu−Li single crystals
14
作者 Zhen JIANG Chen-qi LEI +4 位作者 Jia-jun DING Chun-nan ZHU Dong-feng SHI Jin ZHANG Guo-qing WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3554-3568,共15页
The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission elect... The slip behavior and precipitation behavior of four Al−Cu−Li single crystals with varying orientations at different temperatures were investigated using electron backscattering diffraction(EBSD)and transmission electron microscopy(TEM).The maximum differences in yield strength and ductility of the single crystals at room temperature are 41.6%and 14.7%,respectively.This indicates that the mechanical properties are strongly influenced by the crystal orientation.Moreover,grains with varying orientations exhibit distinct slip characteristics,including slip homogenization,slip localization,and multiple slip.In single crystal SC1,slip localization primarily contributes to its inferior ductility compared to other grains.Nevertheless,during deformation at 250℃,the distinct morphology and distribution of precipitates in the crystals are also correlated with orientation,which causes the increase in the maximum elongation difference to 20.8%in all selected single crystals.Notably,SC1,with a precipitate volume fraction of 2.65%,exhibits more severe slip localization compared to room temperature conditions,while SC2,with a precipitate volume fraction of 4.79%,demonstrates cross-slip characteristics,significantly enhancing the plastic deformation capacity of the Al−Cu−Li alloy. 展开更多
关键词 Al−Cu−Li alloy single crystal slip behavior oriented precipitation deformation mechanism
在线阅读 下载PDF
3D printing for tissue/organ regeneration in China 被引量:3
15
作者 Chaofan He Jiankang He +52 位作者 Chengtie Wu Changshun Ruan Qi Gu Yongqiang Hao Yang Wu Shuo Bai Xiaoxiao Han Liliang Ouyang Jun Yin Hongzhao Zhou Zhuo Xiong Maobin Xie Lei Shao Jing Nie Liang Ma Cijun Shuai Changchun Zhou Xin Zhao Xuetao Shi Mengfei Yu Jiayin Fu Peng Wen Huixia Xuan Yuan Pang Yan’en Wang Yuan Sun Ziqi Gao Abdellah Aazmi Jingbo Zhang Tianhong Qiao Qixiang Yang Ke Yao Mao Mao Jianxin Hao Pinpin Wang Jirong Yang Huawei Qu Xinhuan Wang Xin Liu Shen Ji Shasha Liu Jingke Fu Bingxian Lu Mohan Wu Feng Chen Zihao Zheng Boqing Zhang Muyuan Chai Chaoying Zhang Mouyuan Sun Bo Peng Huayong Yang Yong He 《Bio-Design and Manufacturing》 2025年第2期169-242,I0001,I0002,共76页
As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands... As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands as a landmark in this setting,by promising the precise integration of biomaterials,cells,and bioactive molecules,thus opening up a novel avenue for tissue/organ regeneration.Curated by the editorial board of Bio-Design and Manufacturing,this review brings together a cohort of leading young scientists in China to dissect the core functionalities and evolutionary trajectory of 3D bioprinting,by elucidating the intricate challenges encountered in the manufacturing of transplantable organs.We further delve into the translational pathway from scientific research to clinical application,emphasizing the imperativeness of establishing a regulatory framework and rigorously enforcing quality-control measures.Finally,this review outlines the strategic landscape and innovative achievements of China in this field and provides a comprehensive roadmap for researchers worldwide to propel this field collectively to even greater heights. 展开更多
关键词 3D printing BIOPRINTING Tissue engineering Regenerative medicine
在线阅读 下载PDF
An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties 被引量:13
16
作者 Hailin He Youping Yi +1 位作者 Shiquan Huang Yuxun Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第1期55-63,共9页
The large 2219 Al alloy rings used to connect propellant tank components of a satellite launch vehicle to each other are conventionally manufactured by radial-axial ring rolling at 460°C with 50% deformation,but ... The large 2219 Al alloy rings used to connect propellant tank components of a satellite launch vehicle to each other are conventionally manufactured by radial-axial ring rolling at 460°C with 50% deformation,but often suffer from coarse elongated grain and low ductility. An improved process(hot ring rolling at460°C with 30% deformation, then air cooling to 240°C, followed by ring rolling at 240°C with 20% deformation) was tested for ring manufacturing. The corresponding microstructure evolution and mechanical properties of the produced rings were studied. The results show that the improved process can successfully be applied to manufacture the large 2219 Al alloy rings without formation of macroscopic defects,resulting in a product with fine and uniform grains after heat treatment. The fracture mechanism of both rings was mainly intergranular fracture. With the resulting grain size refinement due to the improved process, more homogeneous slip occured and the crack propagation path became more tortuous during the tensile testing process. Thus, the elongation in all three orthogonal directions was greatly improved,and the axial elongation increased from 3.5% to 10.0%. 展开更多
关键词 2219 Al alloys LARGE RINGS Ring ROLLING Grain REFINEMENT Mechanical properties
原文传递
Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method 被引量:12
17
作者 Ming-Song Chen Zong-Huai Zou +2 位作者 Y.C.Lin Hong-Bin Li Guan-Qiang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第7期1403-1411,共9页
In authors’ previous work [Mater. Charact. 141 (2018) 212-222]. it was found that the heterogeneous deformed microstructures can be replaced by the relatively homogeneous recrystallized grains through an annealing tr... In authors’ previous work [Mater. Charact. 141 (2018) 212-222]. it was found that the heterogeneous deformed microstructures can be replaced by the relatively homogeneous recrystallized grains through an annealing treatment. However, there are still some relatively large recrystallized grains. To find the reasons for the formation of large grains, some new annealing treatment tests were done, and the cellular automation (CA) simulations were carried out in the present work. The experimental results showed that the microstructural evolution during annealing treatment is significantly affected by the content of S phase. So. the effects of δ phase on the nucleation and growth of grains are carefully considered in the CA model to accurately simulate the microstructural evolution behavior. By the CA simulation, it is found that the dislocation density rapidly decreases due to the nucleation of static recrystallization (SRX) and the growth of dynamc recrystallization (DRX) nuclei at the early stage of annealing. The high initial dislocation density provide the high velocity for the growth of DRX nuclei, which is responsible for the formation of coarse grains, However, the growth rate of SRX nuclei is relatively small due to the low dislocation density and pinning effects of δ phase. 展开更多
关键词 GH4169 SUPERALLOY Cellular automation model Coarse grains ANNEALING treatment RECRYSTALLIZATION behavior
原文传递
Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression 被引量:17
18
作者 ZHANG Tao ZHANG Shao-hang +2 位作者 LI Lei LU Shi-hong GONG Hai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期2930-2942,共13页
To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy u... To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map. 展开更多
关键词 7055 aluminium alloy flow behavior modified constitutive equation processing map optimized parameters
在线阅读 下载PDF
Mechanical model of breaking rock and force characteristic of disc cutter 被引量:24
19
作者 夏毅敏 欧阳涛 +1 位作者 张新明 罗德志 《Journal of Central South University》 SCIE EI CAS 2012年第7期1846-1858,共13页
According to the cutting characteristics of progressive spiral movement by rotary cutting of the disc cutter, using the broken theory of interaction of compression and shearing, the three-axis force rotary cutting mec... According to the cutting characteristics of progressive spiral movement by rotary cutting of the disc cutter, using the broken theory of interaction of compression and shearing, the three-axis force rotary cutting mechanical model of disc cutter was established and the influence of installation radius, the phase difference and the cutter space on the mechanics of disc cutter were analyzed. The results show that on the same radial line of tunneling interface, the boring distance of cutting tools installed on a different radius is not equal. The cutting radial line of tunneling interface is a polyline and its height is determined by phase angle and penetration of cutting tools. Both phase difference and the installation radius between adjacent disc cutters have little effect on the vertical force and rolling force, but increase with the increase in cutter spacing. In addition, when increasing phase difference and cutter space bilaterally, and reducing installation radius simultaneously, the lateral force would be improved. Related results have been verified onl O0 t rotary tool cutting test platform. 展开更多
关键词 mechanical model phase angle installation radius cutter space disc cutter
在线阅读 下载PDF
Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process 被引量:17
20
作者 Lei LIU Yun-xin WU +1 位作者 Hai GONG Kai WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期448-459,共12页
To investigate the flow behavior of 2219 Al alloy during warm deformation,the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^(-1) on a Gleeble-3500 ... To investigate the flow behavior of 2219 Al alloy during warm deformation,the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^(-1) on a Gleeble-3500 thermomechanical simulation unit.The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery.The modification on the conventional Arrhenius-type constitutive model approach was made,the material variables and activation energy were determined to be dependent on the deformation parameters.The modified flow stresses were found to be in close agreement with the experimental values.Furthermore,the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate,and was also affected by the coupled effect of strain and strain rate. 展开更多
关键词 2219 Al alloy warm deformation flow behavior constitutive model activation energy
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部