A transparent 3-mercaptopropyl trimethoxysilane(MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes(OLEDs). Effects of the composite anode on brightness and operating voltage ...A transparent 3-mercaptopropyl trimethoxysilane(MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes(OLEDs). Effects of the composite anode on brightness and operating voltage of OLEDs are researched. By optimizing the thickness of each layer of the MPTMS/Ag/MoO3 structure, the transmittance of MPTMS/Ag(8 nm)/Mo O3(30 nm) reaches over 75% at about 520 nm. The sheet resistance is 3.78 ?/□, corresponding to this MPTMS/Ag(8 nm)/MoO3(30 nm) structure. For the OLEDs with the optimized anode, the maximum electroluminescence(EL) current efficiency reaches 4.5 cd/A, and the maximum brightness is 37 036 cd/m2. Moreover, the OLEDs with the optimized anode exhibit a very low operating voltage(2.6 V) for obtaining brightness of 100 cd/m2. We consider that the improved device performance is mainly attributed to the enhanced hole injection resulting from the reduced hole injection barrier height. Our results indicate that employing the MPTMS/Ag/MoO3 as a composite anode can be a simple and promising technique in the fabrication of low-operating voltage and high-brightness OLEDs.展开更多
Electrically responsive photonic crystals represent one of the most promising intelligent material candidates for technological applications in optoelectronics. In this research, dye-doped polymer-stabilized cholester...Electrically responsive photonic crystals represent one of the most promising intelligent material candidates for technological applications in optoelectronics. In this research, dye-doped polymer-stabilized cholesteric liquid crystals(PSCLCs) with negative dielectric anisotropy were fabricated, and mirrorless lasing with an electrically tunable wavelength was successfully achieved. Unlike conventional liquid-crystal lasers, the proposed laser aided in tuning the emission wavelength through controlling the reflection bandwidth based on gradient pitch distribution. The principal advantage of the electrically controlled dye-doped PSCLC laser is that the electric field is applied parallel to the helical axis, which changes the pitch gradient instead of rotating the helix axis, thus keeping the heliconical structure intact during lasing. The broad tuning range(~110 nm) of PSCLC lasers,coupled with their stable emission performance, continuous tunability, and easy fabrication, leads to its numerous potential applications in intelligent optoelectronic devices, such as sensing, medicine, and display.展开更多
A band-gap-tailored random laser with a wide tunable range and low threshold through infrared radiation is demonstrated. When fluorescent dyes are doped into the liquid crystal and heavily doped chiral agent system,we...A band-gap-tailored random laser with a wide tunable range and low threshold through infrared radiation is demonstrated. When fluorescent dyes are doped into the liquid crystal and heavily doped chiral agent system,we demonstrate a wavelength tuning random laser instead of a side-band laser, which is caused by the combined effect of multi-scattering of liquid crystal(LC) and band-gap control. Through rotating the infrared absorbing material on the side of the LC cell, an adjustable range for random lasing of 80 nm by infrared light irradiation was observed.展开更多
基金supported by the National Natural Science Foundation of China(No.21174036)the National High Technology Research and Development Program of China(863 Program)(No.2012AA011901)the National Basic Research Program of China(973 Program)(No.2012CB723406)
文摘A transparent 3-mercaptopropyl trimethoxysilane(MPTMS)/Ag/MoO3 composite anode is introduced to fabricate green organic light-emitting diodes(OLEDs). Effects of the composite anode on brightness and operating voltage of OLEDs are researched. By optimizing the thickness of each layer of the MPTMS/Ag/MoO3 structure, the transmittance of MPTMS/Ag(8 nm)/Mo O3(30 nm) reaches over 75% at about 520 nm. The sheet resistance is 3.78 ?/□, corresponding to this MPTMS/Ag(8 nm)/MoO3(30 nm) structure. For the OLEDs with the optimized anode, the maximum electroluminescence(EL) current efficiency reaches 4.5 cd/A, and the maximum brightness is 37 036 cd/m2. Moreover, the OLEDs with the optimized anode exhibit a very low operating voltage(2.6 V) for obtaining brightness of 100 cd/m2. We consider that the improved device performance is mainly attributed to the enhanced hole injection resulting from the reduced hole injection barrier height. Our results indicate that employing the MPTMS/Ag/MoO3 as a composite anode can be a simple and promising technique in the fabrication of low-operating voltage and high-brightness OLEDs.
基金National Natural Science Foundation of China(NSFC)(11404087,11574070,11874012,51573036,51703047,61107014)Natural Science Foundation of Anhui Province(1708085MF150)+5 种基金Distinguished Youth Foundation of Anhui Province(1808085J03)Fundamental Research Funds for the Central Universities(JZ2017HGTB0187,JZ2018HGPB0276)European Union’s Horizon 2020 research and innovation programme,H2020 Marie Sk?odowskaCurie Actions(MSCA)(744817)Project of State Key Laboratory of Environment-Friendly Energy Materials,Southwest University of Science and Technology(SWUST)(17FKSY0109)Anhui Province Key Laboratory of Environment-Friendly Polymer Materials(KF2019001)China Postdoctoral Science Foundation(2015M571918,2017T100442)
文摘Electrically responsive photonic crystals represent one of the most promising intelligent material candidates for technological applications in optoelectronics. In this research, dye-doped polymer-stabilized cholesteric liquid crystals(PSCLCs) with negative dielectric anisotropy were fabricated, and mirrorless lasing with an electrically tunable wavelength was successfully achieved. Unlike conventional liquid-crystal lasers, the proposed laser aided in tuning the emission wavelength through controlling the reflection bandwidth based on gradient pitch distribution. The principal advantage of the electrically controlled dye-doped PSCLC laser is that the electric field is applied parallel to the helical axis, which changes the pitch gradient instead of rotating the helix axis, thus keeping the heliconical structure intact during lasing. The broad tuning range(~110 nm) of PSCLC lasers,coupled with their stable emission performance, continuous tunability, and easy fabrication, leads to its numerous potential applications in intelligent optoelectronic devices, such as sensing, medicine, and display.
基金Natural Science Foundation of Anhui Province,China(1708085MF150)National Natural Science Foundation of China(NSFC)(61107014,51573036,11404087,11574070)+2 种基金China Postdoctoral Science Foundation(2015M571918,2017T100442)H2020 Marie Sklodowska-Curie Actions(MSCA)(744817)Fundamental Research Funds for the Central Universities,China(JD2017JGPY0006,JZ2017HGTB0187,PA2017GDQT0024)
文摘A band-gap-tailored random laser with a wide tunable range and low threshold through infrared radiation is demonstrated. When fluorescent dyes are doped into the liquid crystal and heavily doped chiral agent system,we demonstrate a wavelength tuning random laser instead of a side-band laser, which is caused by the combined effect of multi-scattering of liquid crystal(LC) and band-gap control. Through rotating the infrared absorbing material on the side of the LC cell, an adjustable range for random lasing of 80 nm by infrared light irradiation was observed.