The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of osci...The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.展开更多
The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. Th...The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. The spectra characteristics of explosion seismic waves, functions of the isolated-seismic grooves and influences of the detonating methods on explosion seismic waves are investigated by experiments. The experimental method is introduced. Some experimental results are presented which are concerned with the influences of topographical conditions, explosive charges, ignition patterns, isolated-seismic grooves and the other related factors on the characteristics of seismic waves.展开更多
Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two t...Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.展开更多
Metal superhydride compounds(MSHCs)have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively m...Metal superhydride compounds(MSHCs)have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively mild synthesis conditions.However,their energetic performance and related potential applications are still open issues till now.In this study,CaH_(6)and NbH_(3),which exhibit evidently differences in their geometric and electronic structures,were chosen as examples of MSHCs to investigate their energetic performance.The structure,bonding features and energetic performance of CaH_(6)and NbH_(3)were predicted based on first-principles calculations.Our results reveal that high-pressure MSHCs always exhibit high energy densities.The range of theoretical energy density of CaH_(6)was predicted as 2.3-5.3 times of TNT,while the value for NbH_(3)was predicted as 1.2 times of TNT.Our study further uncover that CaH_(6)has outstanding energetic properties,which are ascribed to the three-dimensional(3D)aromatic H sublattice and the strong covalent bonding between the H atoms.Moreover,the detonation process and products of rapid energy-release stage of CaH_(6)were simulated via AIMD method,based on which its superior combustion performance was predicted and its specific impulse was calculated as 490.66 s.This study not only enhances the chemical understanding of MSHCs,but also extends the paradigm of traditional energetic materials and provides a new route to design novel high energy density materials.展开更多
An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both ...An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both strength model and EOS were developed in explicit-FE code AUTODYN. Firstly, the shock Hugoniot data of reactive A1/PTFE mixture was analytically derived by implemen- ting this methodology. The JWL EOS was verified to fit shock Hugoniot data of both reacted and un- reacted A1/PTFE mixture, which gives reasonable results. Furthermore, to numerically ascertain the reaction phases of ignition and growth and quasi detonation of A1/PTFE mixture, characterized ex- periment was setup to validate the reaction phases and coefficients of JWL EOS for A1/PTFE mix- ture. From the test, a promising example of reactive mixture A1/PTFE is capable to enhance lethality of weapons, the status computation in clude quasi-detonation pressure and temperature of A1/PTFE mixture in different chemical reaction phases is validated.展开更多
Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate th...Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.展开更多
This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at t...This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at three positions: contact detonation in the center, contact detonation above the web and close-in detonation in the center. The external and internal breach parameters of the panels were evaluated by measuring the diameter of the ejection crater, spalling crater and breach hole created by the charge detonation. The experimental results were compared to predict values obtained by the analytical models proposed by McVay, Morishita and Remennikov. A modified breach with crater limit line and breach without crater limit line were put forward based on the experimental results. The maximum cross-sectional destruction area ratio(MCDAR) values were used to evaluate the damage degree. The maximum value of MCDAR reached 0.331 corresponding to the C5 experimental condition, of which explosion occurred above the web.展开更多
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul...The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.展开更多
Parent compounds of cyclopentadienyltitanium substituted heteropolytungstates with Keggin structure,An[(CpTi)XW11O39]·xH2O(A=Me4N,K;X=P,Si,Co;Cp=η5-C5H5) were synthesized in aqueous phase.By allowing parent hete...Parent compounds of cyclopentadienyltitanium substituted heteropolytungstates with Keggin structure,An[(CpTi)XW11O39]·xH2O(A=Me4N,K;X=P,Si,Co;Cp=η5-C5H5) were synthesized in aqueous phase.By allowing parent heteropoly compounds to react with protonated 8-quinolinol,the title supermolecular compounds(C9H8NO)mAn[(CpTi)XW11O39]·xH2O(A=Me4N,H;X=P,Si,Co) were synthesized.The title compounds were characterized by means of elementary analysis,IR,UV,1H NMR,XRD and TG-DSC.The results indicate that the title compounds are new heteropoly compounds,and there is a charge transfer interaction between the organic cation and heteropoly anion.The results obtained from thermal analysis show that QCpTiPW,QCpTiSiW and QCpTiCoW begin to decompose at 212.4,194.2 and 171.2 ℃,respectively.The results obtained from antibacterial test reveal that QCpTiSiW has the best antibacterial activity,and the MIC values of QCpTiSiW against Escherichia coli and Staphylococcus aurous are 64.0 and 0.500 μg·mL-1,respectively.展开更多
AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a qua...AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.展开更多
The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is...The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is implemented. As a consequence, wave propagation and attenuation in concrete and on soil-concrete interface are obtained respectively. Moreover, the damage regions of concrete at different thicknesses of soil (TOS) and depths of charge (DOC) are procured. The existent soil reduces damage region of concrete. Numerical results provide reference for design of warhead and protective structure and blasting.展开更多
There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system...There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.展开更多
Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were...Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were not revealed systematically.In this study,a full-scale experiment was carried out to simulate the regulator station explosion process,and some numerical simulations with a commercial CFD software called FLACS were conducted to analyze the effect of ignition and vent conditions on the blast overpressure and flame propagation.The experimental results demonstrated that the peak overpressure increased as the distance from the vent increased within a certain distance.And the maximum overpressure appeared 3 m away from the door,which was about 36.6 kPa.It was found that the pressure-time rising curves obtained from the simulation are basically the same as the ones from the experiment,however,the time of reaching the peak pressure was much shorter.The numerical simulation results show that the peak overpressures show an increase trend as the ignition height decreased and the vent relief pressure increased.It indicates that the damage and peak overpressure of gas explosion could be well predicted by FLACS in different styles of regulator station.In addition,the results help us to understand the internal mechanism and development process of gas explosion better.It also offers technical support for the safety protection of the urban regulator station.展开更多
Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compre...Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten me...In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten metal drops is carried out.In the experiment,liquid aluminum and water with different ratios and different temperatures were evaluated,and the influence of different water temperatures on the steam explosion was studied.The corresponding rules of steam explosion at the different experimental conditions were derived.The difference between experiment resultants was analyzed.The experimental results show that when the ratios of liquid aluminum to water are within a certain range,explosions maybe happen,and the higher the temperature of water is,the less likely explosions will occur while other conditions remain the same.The research results would provide an insight into controlling steam explosion.展开更多
The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,...The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,an integrated EFIs with enhanced energy efficiency was designed.Corresponding exploding foil initiator chips were fabricated in batch via micro electromechanical systems technology by integrating a unified foil,a flyer layer and a barrel on a glass substrate successively,meanwhile its package of the whole system was proposed at a volume of 2.194 cm^(3).The structural parameters were determined by predicted performance including flyer velocity,impact behavior and conduction property via the proposed theoretical models and the static electric field simulation.As expect,this integrated EFIs exhibited excellent functions,which could accelerate the flyer to a terminal velocity over 4 km/s and preeminently initiate HNS-IV pellet at a circuit of 0.24 μF/0.9 kV.Furthermore,the theoretical design,fabrication and performance test have been all included to validate the feasibility of this integrated EFIs that was beneficial for its commercial development in the future.展开更多
While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine...The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.展开更多
文摘The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.
文摘The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. The spectra characteristics of explosion seismic waves, functions of the isolated-seismic grooves and influences of the detonating methods on explosion seismic waves are investigated by experiments. The experimental method is introduced. Some experimental results are presented which are concerned with the influences of topographical conditions, explosive charges, ignition patterns, isolated-seismic grooves and the other related factors on the characteristics of seismic waves.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.U2241285,62201267)。
文摘Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.
文摘Metal superhydride compounds(MSHCs)have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively mild synthesis conditions.However,their energetic performance and related potential applications are still open issues till now.In this study,CaH_(6)and NbH_(3),which exhibit evidently differences in their geometric and electronic structures,were chosen as examples of MSHCs to investigate their energetic performance.The structure,bonding features and energetic performance of CaH_(6)and NbH_(3)were predicted based on first-principles calculations.Our results reveal that high-pressure MSHCs always exhibit high energy densities.The range of theoretical energy density of CaH_(6)was predicted as 2.3-5.3 times of TNT,while the value for NbH_(3)was predicted as 1.2 times of TNT.Our study further uncover that CaH_(6)has outstanding energetic properties,which are ascribed to the three-dimensional(3D)aromatic H sublattice and the strong covalent bonding between the H atoms.Moreover,the detonation process and products of rapid energy-release stage of CaH_(6)were simulated via AIMD method,based on which its superior combustion performance was predicted and its specific impulse was calculated as 490.66 s.This study not only enhances the chemical understanding of MSHCs,but also extends the paradigm of traditional energetic materials and provides a new route to design novel high energy density materials.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education(20091101120009)the Project of State Key Laboratory of Science and Technology(YBKT09-03)+1 种基金the National Natural Science Foundation of China(11032002)National Basic Research Program of China(2010CB832706)
文摘An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both strength model and EOS were developed in explicit-FE code AUTODYN. Firstly, the shock Hugoniot data of reactive A1/PTFE mixture was analytically derived by implemen- ting this methodology. The JWL EOS was verified to fit shock Hugoniot data of both reacted and un- reacted A1/PTFE mixture, which gives reasonable results. Furthermore, to numerically ascertain the reaction phases of ignition and growth and quasi detonation of A1/PTFE mixture, characterized ex- periment was setup to validate the reaction phases and coefficients of JWL EOS for A1/PTFE mix- ture. From the test, a promising example of reactive mixture A1/PTFE is capable to enhance lethality of weapons, the status computation in clude quasi-detonation pressure and temperature of A1/PTFE mixture in different chemical reaction phases is validated.
基金the project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology).The project number is NO.QNKT19-04.
文摘Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.
基金supported by The National Natural Science Foundation of China under Grant No.11390362 and No. 11221202
文摘This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at three positions: contact detonation in the center, contact detonation above the web and close-in detonation in the center. The external and internal breach parameters of the panels were evaluated by measuring the diameter of the ejection crater, spalling crater and breach hole created by the charge detonation. The experimental results were compared to predict values obtained by the analytical models proposed by McVay, Morishita and Remennikov. A modified breach with crater limit line and breach without crater limit line were put forward based on the experimental results. The maximum cross-sectional destruction area ratio(MCDAR) values were used to evaluate the damage degree. The maximum value of MCDAR reached 0.331 corresponding to the C5 experimental condition, of which explosion occurred above the web.
基金supported by the National Natural Science Foundation of China (No. 12172052)the China Postdoctoral Science Foundation (No. 3020036722021)
文摘The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.
基金supported by the chemical materials institute China academy of engineering physics,the doctoral innovation research assistance program of science and technology review
文摘Parent compounds of cyclopentadienyltitanium substituted heteropolytungstates with Keggin structure,An[(CpTi)XW11O39]·xH2O(A=Me4N,K;X=P,Si,Co;Cp=η5-C5H5) were synthesized in aqueous phase.By allowing parent heteropoly compounds to react with protonated 8-quinolinol,the title supermolecular compounds(C9H8NO)mAn[(CpTi)XW11O39]·xH2O(A=Me4N,H;X=P,Si,Co) were synthesized.The title compounds were characterized by means of elementary analysis,IR,UV,1H NMR,XRD and TG-DSC.The results indicate that the title compounds are new heteropoly compounds,and there is a charge transfer interaction between the organic cation and heteropoly anion.The results obtained from thermal analysis show that QCpTiPW,QCpTiSiW and QCpTiCoW begin to decompose at 212.4,194.2 and 171.2 ℃,respectively.The results obtained from antibacterial test reveal that QCpTiSiW has the best antibacterial activity,and the MIC values of QCpTiSiW against Escherichia coli and Staphylococcus aurous are 64.0 and 0.500 μg·mL-1,respectively.
文摘AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.
基金Sponsored by Excellent Young Scholars Research Fund of Beijing Institute of Technology (000Y02-11)
文摘The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is implemented. As a consequence, wave propagation and attenuation in concrete and on soil-concrete interface are obtained respectively. Moreover, the damage regions of concrete at different thicknesses of soil (TOS) and depths of charge (DOC) are procured. The existent soil reduces damage region of concrete. Numerical results provide reference for design of warhead and protective structure and blasting.
基金Sponsored by the National"973"Program Project(51335030103)
文摘There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.
基金Supported by the National Key Research and Development Program of China(2016YFC0802502)。
文摘Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were not revealed systematically.In this study,a full-scale experiment was carried out to simulate the regulator station explosion process,and some numerical simulations with a commercial CFD software called FLACS were conducted to analyze the effect of ignition and vent conditions on the blast overpressure and flame propagation.The experimental results demonstrated that the peak overpressure increased as the distance from the vent increased within a certain distance.And the maximum overpressure appeared 3 m away from the door,which was about 36.6 kPa.It was found that the pressure-time rising curves obtained from the simulation are basically the same as the ones from the experiment,however,the time of reaching the peak pressure was much shorter.The numerical simulation results show that the peak overpressures show an increase trend as the ignition height decreased and the vent relief pressure increased.It indicates that the damage and peak overpressure of gas explosion could be well predicted by FLACS in different styles of regulator station.In addition,the results help us to understand the internal mechanism and development process of gas explosion better.It also offers technical support for the safety protection of the urban regulator station.
基金financially supported by the National Science and Technology Support Program of China(2012BAK13B01)
文摘Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
文摘In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten metal drops is carried out.In the experiment,liquid aluminum and water with different ratios and different temperatures were evaluated,and the influence of different water temperatures on the steam explosion was studied.The corresponding rules of steam explosion at the different experimental conditions were derived.The difference between experiment resultants was analyzed.The experimental results show that when the ratios of liquid aluminum to water are within a certain range,explosions maybe happen,and the higher the temperature of water is,the less likely explosions will occur while other conditions remain the same.The research results would provide an insight into controlling steam explosion.
基金National Natural Science Foundation of China (Grant No.11872013) to provide fund for conducting experiments。
文摘The integration method of exploding foil initiator system(EFIs) used to be researched to broaden its application range in military and aerospace in the last few decades.In order to lower the firing voltage below 1 kV,an integrated EFIs with enhanced energy efficiency was designed.Corresponding exploding foil initiator chips were fabricated in batch via micro electromechanical systems technology by integrating a unified foil,a flyer layer and a barrel on a glass substrate successively,meanwhile its package of the whole system was proposed at a volume of 2.194 cm^(3).The structural parameters were determined by predicted performance including flyer velocity,impact behavior and conduction property via the proposed theoretical models and the static electric field simulation.As expect,this integrated EFIs exhibited excellent functions,which could accelerate the flyer to a terminal velocity over 4 km/s and preeminently initiate HNS-IV pellet at a circuit of 0.24 μF/0.9 kV.Furthermore,the theoretical design,fabrication and performance test have been all included to validate the feasibility of this integrated EFIs that was beneficial for its commercial development in the future.
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金supported by the National Natural Science Foundation of China(Grant No.11872121)。
文摘The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.