The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. Th...The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. The spectra characteristics of explosion seismic waves, functions of the isolated-seismic grooves and influences of the detonating methods on explosion seismic waves are investigated by experiments. The experimental method is introduced. Some experimental results are presented which are concerned with the influences of topographical conditions, explosive charges, ignition patterns, isolated-seismic grooves and the other related factors on the characteristics of seismic waves.展开更多
Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate th...Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.展开更多
An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both ...An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both strength model and EOS were developed in explicit-FE code AUTODYN. Firstly, the shock Hugoniot data of reactive A1/PTFE mixture was analytically derived by implemen- ting this methodology. The JWL EOS was verified to fit shock Hugoniot data of both reacted and un- reacted A1/PTFE mixture, which gives reasonable results. Furthermore, to numerically ascertain the reaction phases of ignition and growth and quasi detonation of A1/PTFE mixture, characterized ex- periment was setup to validate the reaction phases and coefficients of JWL EOS for A1/PTFE mix- ture. From the test, a promising example of reactive mixture A1/PTFE is capable to enhance lethality of weapons, the status computation in clude quasi-detonation pressure and temperature of A1/PTFE mixture in different chemical reaction phases is validated.展开更多
This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at t...This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at three positions: contact detonation in the center, contact detonation above the web and close-in detonation in the center. The external and internal breach parameters of the panels were evaluated by measuring the diameter of the ejection crater, spalling crater and breach hole created by the charge detonation. The experimental results were compared to predict values obtained by the analytical models proposed by McVay, Morishita and Remennikov. A modified breach with crater limit line and breach without crater limit line were put forward based on the experimental results. The maximum cross-sectional destruction area ratio(MCDAR) values were used to evaluate the damage degree. The maximum value of MCDAR reached 0.331 corresponding to the C5 experimental condition, of which explosion occurred above the web.展开更多
The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simul...The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.展开更多
Parent compounds of cyclopentadienyltitanium substituted heteropolytungstates with Keggin structure,An[(CpTi)XW11O39]·xH2O(A=Me4N,K;X=P,Si,Co;Cp=η5-C5H5) were synthesized in aqueous phase.By allowing parent hete...Parent compounds of cyclopentadienyltitanium substituted heteropolytungstates with Keggin structure,An[(CpTi)XW11O39]·xH2O(A=Me4N,K;X=P,Si,Co;Cp=η5-C5H5) were synthesized in aqueous phase.By allowing parent heteropoly compounds to react with protonated 8-quinolinol,the title supermolecular compounds(C9H8NO)mAn[(CpTi)XW11O39]·xH2O(A=Me4N,H;X=P,Si,Co) were synthesized.The title compounds were characterized by means of elementary analysis,IR,UV,1H NMR,XRD and TG-DSC.The results indicate that the title compounds are new heteropoly compounds,and there is a charge transfer interaction between the organic cation and heteropoly anion.The results obtained from thermal analysis show that QCpTiPW,QCpTiSiW and QCpTiCoW begin to decompose at 212.4,194.2 and 171.2 ℃,respectively.The results obtained from antibacterial test reveal that QCpTiSiW has the best antibacterial activity,and the MIC values of QCpTiSiW against Escherichia coli and Staphylococcus aurous are 64.0 and 0.500 μg·mL-1,respectively.展开更多
AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a qua...AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.展开更多
The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is...The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is implemented. As a consequence, wave propagation and attenuation in concrete and on soil-concrete interface are obtained respectively. Moreover, the damage regions of concrete at different thicknesses of soil (TOS) and depths of charge (DOC) are procured. The existent soil reduces damage region of concrete. Numerical results provide reference for design of warhead and protective structure and blasting.展开更多
There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system...There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.展开更多
Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were...Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were not revealed systematically.In this study,a full-scale experiment was carried out to simulate the regulator station explosion process,and some numerical simulations with a commercial CFD software called FLACS were conducted to analyze the effect of ignition and vent conditions on the blast overpressure and flame propagation.The experimental results demonstrated that the peak overpressure increased as the distance from the vent increased within a certain distance.And the maximum overpressure appeared 3 m away from the door,which was about 36.6 kPa.It was found that the pressure-time rising curves obtained from the simulation are basically the same as the ones from the experiment,however,the time of reaching the peak pressure was much shorter.The numerical simulation results show that the peak overpressures show an increase trend as the ignition height decreased and the vent relief pressure increased.It indicates that the damage and peak overpressure of gas explosion could be well predicted by FLACS in different styles of regulator station.In addition,the results help us to understand the internal mechanism and development process of gas explosion better.It also offers technical support for the safety protection of the urban regulator station.展开更多
Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compre...Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.展开更多
In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten me...In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten metal drops is carried out.In the experiment,liquid aluminum and water with different ratios and different temperatures were evaluated,and the influence of different water temperatures on the steam explosion was studied.The corresponding rules of steam explosion at the different experimental conditions were derived.The difference between experiment resultants was analyzed.The experimental results show that when the ratios of liquid aluminum to water are within a certain range,explosions maybe happen,and the higher the temperature of water is,the less likely explosions will occur while other conditions remain the same.The research results would provide an insight into controlling steam explosion.展开更多
Explosion and shock often involve large deformation, interface treatment between multi-material, and strong discontinuity. The Eulerian method has advantages for solving these problems. In parallel computation of the ...Explosion and shock often involve large deformation, interface treatment between multi-material, and strong discontinuity. The Eulerian method has advantages for solving these problems. In parallel computation of the Eulerian method, the physical quantities of the computaional cells do not change before the disturbance reaches to these cells. Computational efficiency is low when using fixed partition because of load imbalance. To solve this problem, a dynamic parallel method in which the computation domain expands with disturbance is used. The dynamic parallel program is designed based on the generally used message passing interface model. The numerical test of dynamic parallel program agrees well with that of the original parallel program, also agrees with the actual situation.展开更多
The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to tr...The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion.展开更多
The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of osci...The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.展开更多
The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process.Meanwhile,the ionization current probes were set up to detect the reaction intensity of the reaction ...The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process.Meanwhile,the ionization current probes were set up to detect the reaction intensity of the reaction zone.The characteristics of methane/air flame propagation and microstructure were analyzed in detail by the experi- mental results coupled with chemical reaction thermodynamics.The high speed schlieren image showed the transition from laminar flame to turbulence combustion.The ion current curves disclosed the reaction intensity and combustion characteristic of flame front.In the test,the particular tulip flame was formed clearly,which was induced to some extent by turbulent combustion.Based on the schlieren images and iron current result,it can be drawn that the small scale turbulence combustion also appears in laminar flame,which thickens the flame front,but makes little influence on the flame front shape.During the laminar-turbulent transition,the explosion pressure plays an important role on the flame structure change.展开更多
Flat plate impact experiments are crucial in assessing the dynamic mechanical properties of materials.However,yaw angle tolerances always affect the accuracy of the results.To analyze this effect,this study conducted ...Flat plate impact experiments are crucial in assessing the dynamic mechanical properties of materials.However,yaw angle tolerances always affect the accuracy of the results.To analyze this effect,this study conducted numerical simulations and theoretical derivations of non-ideal plate impacts.By comparing the simulated results of spallation,shock wave propagation,and free surface velocity,laws governing the effect of yaw angle on the plate impact were summarized.We observed that yaw angles influence the wave-action time and the shape of the compression zone,which affects the trigger and location of spallation and the free surface velocity of the target.Additionally,the yaw angle diminishes the kinetic energy of the target.When the yaw angle exceeds 2°,a significant energy reduction occurs as the shock wave propagates,which results in insufficient energy for complete spallation.Our analyses led to proposing methods for determining the critical yaw angle in plate impact experiments and to introducing a multipoint-velocimetry approach to calculate the non-ideal impact posture of the flyer.Notably,the findings revealed that 0.2°could serve as the critical yaw angle in certain scenarios.Leveraging these research outcomes judiciously can aid in assessing experimental deviations effectively and optimizing experimental costs.展开更多
Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two t...Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.展开更多
Metal superhydride compounds(MSHCs)have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively m...Metal superhydride compounds(MSHCs)have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively mild synthesis conditions.However,their energetic performance and related potential applications are still open issues till now.In this study,CaH_(6)and NbH_(3),which exhibit evidently differences in their geometric and electronic structures,were chosen as examples of MSHCs to investigate their energetic performance.The structure,bonding features and energetic performance of CaH_(6)and NbH_(3)were predicted based on first-principles calculations.Our results reveal that high-pressure MSHCs always exhibit high energy densities.The range of theoretical energy density of CaH_(6)was predicted as 2.3-5.3 times of TNT,while the value for NbH_(3)was predicted as 1.2 times of TNT.Our study further uncover that CaH_(6)has outstanding energetic properties,which are ascribed to the three-dimensional(3D)aromatic H sublattice and the strong covalent bonding between the H atoms.Moreover,the detonation process and products of rapid energy-release stage of CaH_(6)were simulated via AIMD method,based on which its superior combustion performance was predicted and its specific impulse was calculated as 490.66 s.This study not only enhances the chemical understanding of MSHCs,but also extends the paradigm of traditional energetic materials and provides a new route to design novel high energy density materials.展开更多
As the energy density of lithium-ion batteries (LIBs) continues to increase,their safety has become a great concern for further practical large-scale applications.One of the ultimate solution of the safety issue is to...As the energy density of lithium-ion batteries (LIBs) continues to increase,their safety has become a great concern for further practical large-scale applications.One of the ultimate solution of the safety issue is to develop intrinsically safe battery components,where the battery separators and liquid electrolytes are critical for the battery thermal runaway process.In this review,we summarize recent progress in the rational materials design on battery separators and liquid electrolyte towards the goal of improving the safety of LIBs.Also,some strategies for further improving safety of LIBs are also briefly outlooked.展开更多
文摘The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. The spectra characteristics of explosion seismic waves, functions of the isolated-seismic grooves and influences of the detonating methods on explosion seismic waves are investigated by experiments. The experimental method is introduced. Some experimental results are presented which are concerned with the influences of topographical conditions, explosive charges, ignition patterns, isolated-seismic grooves and the other related factors on the characteristics of seismic waves.
基金the project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology).The project number is NO.QNKT19-04.
文摘Nowadays, the mitigation of damage to a ship caused by the underwater explosion attracts more and more attention from the modern ship designers. In this study, two kinds of scale tests were conducted to investigate the effects of polyurea coatings on the blast resistance of hulls subjected to underwater explosion. Firstly, small-scale model tests with different polyurea coatings were carried out. Results indicate that polyurea has a better blast resistance performance when coated on the front face, which can effectively reduce the maximum deflection of the steel plate by more than 20% and reduce the deformation energy by 35.7%-45.4%. Next, a full-scale ship(approximately 50 m × 9 m) under loadings produced by the detonation of 33 kg of spherical TNT charges was tested, where a part of the ship was coated with polyurea on the front face(8 mm + 24 mm) and not on the contrast area. Damage characteristics on the bottom were statistically analyzed based on a 3D scanning technology, indicating that polyurea contributes to enhancing the blast protection of the ship. However, damage results of this test were different from those of the small-scale tests. Moreover, the deformation area of the bottom with polyurea was greatly increased by 40.1% to disperse explosion energy, a conclusion that cannot be drown from the small-scale tests.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education(20091101120009)the Project of State Key Laboratory of Science and Technology(YBKT09-03)+1 种基金the National Natural Science Foundation of China(11032002)National Basic Research Program of China(2010CB832706)
文摘An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both strength model and EOS were developed in explicit-FE code AUTODYN. Firstly, the shock Hugoniot data of reactive A1/PTFE mixture was analytically derived by implemen- ting this methodology. The JWL EOS was verified to fit shock Hugoniot data of both reacted and un- reacted A1/PTFE mixture, which gives reasonable results. Furthermore, to numerically ascertain the reaction phases of ignition and growth and quasi detonation of A1/PTFE mixture, characterized ex- periment was setup to validate the reaction phases and coefficients of JWL EOS for A1/PTFE mix- ture. From the test, a promising example of reactive mixture A1/PTFE is capable to enhance lethality of weapons, the status computation in clude quasi-detonation pressure and temperature of A1/PTFE mixture in different chemical reaction phases is validated.
基金supported by The National Natural Science Foundation of China under Grant No.11390362 and No. 11221202
文摘This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at three positions: contact detonation in the center, contact detonation above the web and close-in detonation in the center. The external and internal breach parameters of the panels were evaluated by measuring the diameter of the ejection crater, spalling crater and breach hole created by the charge detonation. The experimental results were compared to predict values obtained by the analytical models proposed by McVay, Morishita and Remennikov. A modified breach with crater limit line and breach without crater limit line were put forward based on the experimental results. The maximum cross-sectional destruction area ratio(MCDAR) values were used to evaluate the damage degree. The maximum value of MCDAR reached 0.331 corresponding to the C5 experimental condition, of which explosion occurred above the web.
基金supported by the National Natural Science Foundation of China (No. 12172052)the China Postdoctoral Science Foundation (No. 3020036722021)
文摘The dynamic formation,shock-induced inhomogeneous temperature rise and corresponding chemical reaction behaviors of PTFE/Al reactive liner shaped charge jet(RLSCJ)are investigated by the combination of mesoscale simulation,reaction kinetics and chemical energy release test.A two-dimensional granular model is developed with the randomly normal distribution of aluminum particle sizes and the particle delivery program.Then,the granular model is employed to study the shock-induced thermal behavior during the formation and extension processes of RLSCJ,as well as the temperature history curves of aluminum particles.The simulation results visualize the motion and temperature responses of the RLSCJ at the grain level,and further indicate that the aluminum particles are more likely to gather in the last two-thirds of the jet along its axis.Further analysis shows that the shock,collision,friction and deformation behaviors are all responsible for the steep temperature rise of the reactive jet.In addition,a shock-induced chemical reaction extent model of RLSCJ is built based on the combination of the Arrhenius model and the Avrami-Erofeev kinetic model,by which the chemical reaction growth behavior during the formation and extension stages is described quantitatively.The model indicates the reaction extent highly corresponds to the aluminum particle temperature history at the formation and extension stages.At last,a manometry chamber and the corresponding energy release model are used together to study the macroscopic chemical energy release characteristics of RLSCJ,by which the reaction extent model is verified.
基金supported by the chemical materials institute China academy of engineering physics,the doctoral innovation research assistance program of science and technology review
文摘Parent compounds of cyclopentadienyltitanium substituted heteropolytungstates with Keggin structure,An[(CpTi)XW11O39]·xH2O(A=Me4N,K;X=P,Si,Co;Cp=η5-C5H5) were synthesized in aqueous phase.By allowing parent heteropoly compounds to react with protonated 8-quinolinol,the title supermolecular compounds(C9H8NO)mAn[(CpTi)XW11O39]·xH2O(A=Me4N,H;X=P,Si,Co) were synthesized.The title compounds were characterized by means of elementary analysis,IR,UV,1H NMR,XRD and TG-DSC.The results indicate that the title compounds are new heteropoly compounds,and there is a charge transfer interaction between the organic cation and heteropoly anion.The results obtained from thermal analysis show that QCpTiPW,QCpTiSiW and QCpTiCoW begin to decompose at 212.4,194.2 and 171.2 ℃,respectively.The results obtained from antibacterial test reveal that QCpTiSiW has the best antibacterial activity,and the MIC values of QCpTiSiW against Escherichia coli and Staphylococcus aurous are 64.0 and 0.500 μg·mL-1,respectively.
文摘AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values.
基金Sponsored by Excellent Young Scholars Research Fund of Beijing Institute of Technology (000Y02-11)
文摘The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is implemented. As a consequence, wave propagation and attenuation in concrete and on soil-concrete interface are obtained respectively. Moreover, the damage regions of concrete at different thicknesses of soil (TOS) and depths of charge (DOC) are procured. The existent soil reduces damage region of concrete. Numerical results provide reference for design of warhead and protective structure and blasting.
基金Sponsored by the National"973"Program Project(51335030103)
文摘There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion. The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water. The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85 GPa, which is satisfying for the good agreement to the 12.97 GPa with one dimensional theoretical analysis and 12.86 GPa with numerical simulation. The maximum discrepancy is 0.93 %. The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.
基金Supported by the National Key Research and Development Program of China(2016YFC0802502)。
文摘Regulator station is an important part in the urban gas transmission and distribution system.Once gas explosion occurs,the real explosion process and consequences of methane gas explosion in the regulator station were not revealed systematically.In this study,a full-scale experiment was carried out to simulate the regulator station explosion process,and some numerical simulations with a commercial CFD software called FLACS were conducted to analyze the effect of ignition and vent conditions on the blast overpressure and flame propagation.The experimental results demonstrated that the peak overpressure increased as the distance from the vent increased within a certain distance.And the maximum overpressure appeared 3 m away from the door,which was about 36.6 kPa.It was found that the pressure-time rising curves obtained from the simulation are basically the same as the ones from the experiment,however,the time of reaching the peak pressure was much shorter.The numerical simulation results show that the peak overpressures show an increase trend as the ignition height decreased and the vent relief pressure increased.It indicates that the damage and peak overpressure of gas explosion could be well predicted by FLACS in different styles of regulator station.In addition,the results help us to understand the internal mechanism and development process of gas explosion better.It also offers technical support for the safety protection of the urban regulator station.
基金financially supported by the National Science and Technology Support Program of China(2012BAK13B01)
文摘Abstract: In order to study the flammability and explosion property of gases during the propane oxidation to acrylic acid process, the explosion limits and the safety oxygen content of gases at the recycle gas compressor outlet, the reactor inlet, and the reactor outlet were theoretically calculated and experimentally tested. Finally, the inert limit was also determined. It showed that gases at the recycle gas compressor outlet and the reactor outlet were nonflammable based on three indicators: the explosion limits, the safety oxygen content and the inert limit. The C3H6 and O2 contents were higher at the reactor inlet, which made the mixed gases easily ignitable. However, the large amount of inert gases suppressed the possibility of explo- sion effectively. As a consequence, no explosion phenomenon would happen in all three locations. But gases at the reactor inlet are most dangerous, where more supervision on the concentration of gases and more strict control on the temperature and pressure should be implemented. Besides this, open flame, hot surfaces and other sources of ignition are prohibited in working spaces. The experimental results can be applied to similar process for oxidation of propane.
文摘In order to study the mechanism of steam explosion caused by the interactionbetween coolant and melted metal drops with high temperature,the process of explosion generated by water following interaction with molten metal drops is carried out.In the experiment,liquid aluminum and water with different ratios and different temperatures were evaluated,and the influence of different water temperatures on the steam explosion was studied.The corresponding rules of steam explosion at the different experimental conditions were derived.The difference between experiment resultants was analyzed.The experimental results show that when the ratios of liquid aluminum to water are within a certain range,explosions maybe happen,and the higher the temperature of water is,the less likely explosions will occur while other conditions remain the same.The research results would provide an insight into controlling steam explosion.
基金supported by the National Basic Research Program of China (No. 2010CB832706)the State Key Laboratory of Explosion Science and Technology (No. ZDKT10-03b)
文摘Explosion and shock often involve large deformation, interface treatment between multi-material, and strong discontinuity. The Eulerian method has advantages for solving these problems. In parallel computation of the Eulerian method, the physical quantities of the computaional cells do not change before the disturbance reaches to these cells. Computational efficiency is low when using fixed partition because of load imbalance. To solve this problem, a dynamic parallel method in which the computation domain expands with disturbance is used. The dynamic parallel program is designed based on the generally used message passing interface model. The numerical test of dynamic parallel program agrees well with that of the original parallel program, also agrees with the actual situation.
基金supported by National Defense Science and Technology Program(A14007)China National Space Administration Preliminary Research Project(KJSP2020020101,KJSP2020010304)。
文摘The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion.
文摘The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.
基金the Open Foundation of State Key Lab of Explosion Science and Technology(KFJJ07-06)the Open Project of State Key Lab of Fire Science(HZ2007-KF06)
文摘The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process.Meanwhile,the ionization current probes were set up to detect the reaction intensity of the reaction zone.The characteristics of methane/air flame propagation and microstructure were analyzed in detail by the experi- mental results coupled with chemical reaction thermodynamics.The high speed schlieren image showed the transition from laminar flame to turbulence combustion.The ion current curves disclosed the reaction intensity and combustion characteristic of flame front.In the test,the particular tulip flame was formed clearly,which was induced to some extent by turbulent combustion.Based on the schlieren images and iron current result,it can be drawn that the small scale turbulence combustion also appears in laminar flame,which thickens the flame front,but makes little influence on the flame front shape.During the laminar-turbulent transition,the explosion pressure plays an important role on the flame structure change.
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.12221002)the National Natural Science Foundation of China(Grant No.12372346).
文摘Flat plate impact experiments are crucial in assessing the dynamic mechanical properties of materials.However,yaw angle tolerances always affect the accuracy of the results.To analyze this effect,this study conducted numerical simulations and theoretical derivations of non-ideal plate impacts.By comparing the simulated results of spallation,shock wave propagation,and free surface velocity,laws governing the effect of yaw angle on the plate impact were summarized.We observed that yaw angles influence the wave-action time and the shape of the compression zone,which affects the trigger and location of spallation and the free surface velocity of the target.Additionally,the yaw angle diminishes the kinetic energy of the target.When the yaw angle exceeds 2°,a significant energy reduction occurs as the shock wave propagates,which results in insufficient energy for complete spallation.Our analyses led to proposing methods for determining the critical yaw angle in plate impact experiments and to introducing a multipoint-velocimetry approach to calculate the non-ideal impact posture of the flyer.Notably,the findings revealed that 0.2°could serve as the critical yaw angle in certain scenarios.Leveraging these research outcomes judiciously can aid in assessing experimental deviations effectively and optimizing experimental costs.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.U2241285,62201267)。
文摘Zirconium,titanium,and other hexagonally close-packed(HCP)metals and their alloys are representative high specific strength,high reaction enthalpy,and high thermal conductivity structural materials.In this study,two typical HCP metals,zirconium,and titanium,were applied to reactive materials(RMs)to prepare Zr/PTFE/W RMs and Ti/PTFE/W RMs,validating the feasibility of HCP metal/PTFE/W RMs.The impact response process of typical HCP metal/PTFE/W RMs under high-velocity dynamic loads was studied using shock equations of state(EOS)based on porous mixtures and chemical reaction kinetics equations.An improved hemispherical quasi-sealed test chamber was employed to measure the energy release characteristic curves of 10 types of Zr/PTFE/W RMs and Ti/PTFE/W RMs under impact velocities ranging from 500 m/s to 1300 m/s.The datasets of the impact-induced energy release characteristics of HCP metal/PTFE/W RMs were established.Additionally,the energy release efficiency of HCP metal/PTFE/W RMs under impact was predicted using the support vector regression(SVR)kernel function model.The datasets of Zr/PTFE/W RMs and Ti/PTFE/W RMs with W contents of 0%,25%,50%,and 75%were used as test sets,respectively.The model predictions showed a high degree of agreement with the experimental data,with mean absolute errors(MAE)of 4.8,6.5,4.6,and 4.1,respectively.
文摘Metal superhydride compounds(MSHCs)have attracted much attention in the fields of high-pressure physics due to the superconductivity properties deriving from the metallic-hydrogen-like characteristics and relatively mild synthesis conditions.However,their energetic performance and related potential applications are still open issues till now.In this study,CaH_(6)and NbH_(3),which exhibit evidently differences in their geometric and electronic structures,were chosen as examples of MSHCs to investigate their energetic performance.The structure,bonding features and energetic performance of CaH_(6)and NbH_(3)were predicted based on first-principles calculations.Our results reveal that high-pressure MSHCs always exhibit high energy densities.The range of theoretical energy density of CaH_(6)was predicted as 2.3-5.3 times of TNT,while the value for NbH_(3)was predicted as 1.2 times of TNT.Our study further uncover that CaH_(6)has outstanding energetic properties,which are ascribed to the three-dimensional(3D)aromatic H sublattice and the strong covalent bonding between the H atoms.Moreover,the detonation process and products of rapid energy-release stage of CaH_(6)were simulated via AIMD method,based on which its superior combustion performance was predicted and its specific impulse was calculated as 490.66 s.This study not only enhances the chemical understanding of MSHCs,but also extends the paradigm of traditional energetic materials and provides a new route to design novel high energy density materials.
基金the support from the National Natural Science Foundation of China(General Program no.51874041)。
文摘As the energy density of lithium-ion batteries (LIBs) continues to increase,their safety has become a great concern for further practical large-scale applications.One of the ultimate solution of the safety issue is to develop intrinsically safe battery components,where the battery separators and liquid electrolytes are critical for the battery thermal runaway process.In this review,we summarize recent progress in the rational materials design on battery separators and liquid electrolyte towards the goal of improving the safety of LIBs.Also,some strategies for further improving safety of LIBs are also briefly outlooked.