Objective To investigate the serum total IgE (tlgE) and specific IgE (slgE) to common allergens among allergic patients in Guangzhou, China. Methods 7 085 patients were examined for tlgE and slgE to 15 allergens, ...Objective To investigate the serum total IgE (tlgE) and specific IgE (slgE) to common allergens among allergic patients in Guangzhou, China. Methods 7 085 patients were examined for tlgE and slgE to 15 allergens, based on the protocols of reversed enzyme allergosorbent test and the sandwich enzyme-linked immunosorbent assay. Results 3 758 (53.04%) patients tested positive for tlgE, and 4 640 (65.49%) for slgE. Der pteronyssinus, Derfarinae, eggs, and cow's milk were the most common allergens leading to higher positive rates of slgE responses. Several peaks of sensitization were: Der pteronyssinus, Derfarinae, and Blomia tropicalis at age 10-12; cow's milk at age below 3; eggs at age 4-6. The mean level and positive rate of tlgE tended to increase in subjects sensitized to more allergens. Sensitization to Der pteronyssinus (OR, 1.6; P〈O.05), Der farinae (OR, 1.5; P〈O.05), Blomia tropicalis (OR, 1.4; P〈O.05), Blattella germanica (OR, 1.5; P〈O.05), cow's milk (OR, 1.3; P〈O.05), and soy beans (OR, 2.0; P〈O.05) were independently correlated with allergy-related conditions in preliminary diagnosis. Conclusion The major allergens in Guangzhou include Derpteronyssinus, Derfarinae, cow's milk, and eggs. Sensitization to these allergens appears to be predictors of allergy-related disorder.展开更多
In recent years,the usage,management and benefit of large-scale scientific research instruments and equipment in scientific research institutes have been a leading issue in the management of scientific research instit...In recent years,the usage,management and benefit of large-scale scientific research instruments and equipment in scientific research institutes have been a leading issue in the management of scientific research institutes.Within the scope of equipment budget,it is necessary for each equipment acquisition team to conduct a round of communication,coordination and negotiation with suppliers in order to improve the cost performance of equipment procurement and maximize the performance index to meet the needs of scientific research.By introducing the practical experience of the State Key Laboratory in purchasing imported equipment and managing large-scale instruments,this paper probes into the management process of the imported large-scale scientific research tax-free equipment of scientific research institutes,and explores the system and methods to guarantee and improve the efficiency of large-scale instruments in scientific research institutes from the aspects of policy,funds and technology.展开更多
The State Key Laboratory of Natural and Biomimetic Drugs was approved for a funding of nearly 100 million yuan specifically aimed at the purchase and maintenance of equipment and instruments from 2018 to 2020,which is...The State Key Laboratory of Natural and Biomimetic Drugs was approved for a funding of nearly 100 million yuan specifically aimed at the purchase and maintenance of equipment and instruments from 2018 to 2020,which is a record high.The Laboratory focuses on two major directions of scientific research,the"basic scientific problems of drug resistance of complex components of natural products"and the"key biomimetic scientific problems of endogenous substances therapeutic functions".The selection of scientific instruments and equipment,trial production,upgrading,as well as high level of technical and management personnel allocation and other aspects are critical to meet the development needs of the Key Laboratory and to maintain the advantages and leading role in these two major directions of scientific research.展开更多
This year marks the tenth anniversary of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(SKLADOT)at the Hong Kong University of Science and Technology(HKUST).The predecessor of SKLADOT w...This year marks the tenth anniversary of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(SKLADOT)at the Hong Kong University of Science and Technology(HKUST).The predecessor of SKLADOT was the Center for Display Research(CDR)which was started in 1995.Thus display research has a long history at HKUST.展开更多
·Prof.XIONG,could you please give us a brief introduction to SKLMCMS?Director XIONG Ke:The State Key Laboratory of Mechanics and Control of Mechanical Structures(SKLMCMS)was established with the approval of t...·Prof.XIONG,could you please give us a brief introduction to SKLMCMS?Director XIONG Ke:The State Key Laboratory of Mechanics and Control of Mechanical Structures(SKLMCMS)was established with the approval of the Ministry of Science and Technology of the People’s Republic of China in October 2011.The laboratory is located at Nanjing University of Aeronautics and Astronautics(NUAA).展开更多
Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during c...Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA.展开更多
The power system is experiencing a higher penetration of renewable energy generations(REGs).The short circuit ratio(SCR)and the grid impedance ratio(GIR)are two indices to quantify the system strength of the power sys...The power system is experiencing a higher penetration of renewable energy generations(REGs).The short circuit ratio(SCR)and the grid impedance ratio(GIR)are two indices to quantify the system strength of the power system with REGs.In this paper,the critical short circuit ratio(CSCR)is defined as the corresponding SCR when the system voltage is in the critical stable state.Through static voltage stability analysis,the mathematical expression of the CSCR considering the impact of GIR is derived.The maximum value of CSCR is adopted as the critical value to distinguish the weak power system.Based on the static equivalent circuit analysis,it is proved that the CSCR is still effective to evaluate critical system strength considering the interactive impact among REGs.Finally,we find that the GIR can be neglected and the SCR can be used individually to evaluate the system strength when SCR>2 or GIR>5.The correctness and rationality of the CSCR and its critical value are validated on ADPSS.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ...The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.展开更多
Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the...Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.展开更多
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag...Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.展开更多
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per...The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions.展开更多
Herein,a series of manganese oxide catalysts with different valences(Mn_(3)O_(4),Mn_(2)O_(3),and MnO_(2))were designed and synthesized for the synthesis of ethylene urea(EU)from ethylenediamine(EDA)and carbon dioxide(...Herein,a series of manganese oxide catalysts with different valences(Mn_(3)O_(4),Mn_(2)O_(3),and MnO_(2))were designed and synthesized for the synthesis of ethylene urea(EU)from ethylenediamine(EDA)and carbon dioxide(CO_(2)).With a maximal EDA conversion of 82%and EU selectivity of 99%at 160℃ for 2 h,Mn_(2)O_(3) catalysts had the best catalytic activity among them,which was superior to the reported catalysts.In the following order:Mn_(2)O_(3)>MnO_(2)>Mn_(3)O_(4),the catalytic activity for the synthesis of EU from CO_(2) and EDA decreased.Further characterization showed the Mn_(2)O_(3) catalyst possessed a greater Mn^(3+)/Mn4+ratio and more surface oxygen vacancies than the MnO_(2) and Mn_(3)O_(4),which improved its capacity to adsorb and activate CO_(2) and EDA.After four recycling runs,the EDA conversion slightly declined from 82%to 56%on Mn_(2)O_(3) catalyst,while no obvious change in EU selectivity was observed.The loss of surface Ov contents and Mn^(3+)proportion were concluded as main reasons for the decrease in catalytic activity over Mn_(2)O_(3) catalyst.This work demonstrated a metal oxide catalyst that was efficient in producing EU from CO_(2) and EDA.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-...1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.展开更多
To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions tha...To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
EngineeringAsking good questions is often a starting point of a revolutionary breakthrough.Good examples include the famous 7 Clay millennium problems and the 125 open questions released in SCIENCE in 2021 at the 125t...EngineeringAsking good questions is often a starting point of a revolutionary breakthrough.Good examples include the famous 7 Clay millennium problems and the 125 open questions released in SCIENCE in 2021 at the 125th anniversary of Shanghai Jiaotong University(SJTU),which greatly promote the development in mathematics,science and technology.展开更多
Fiber materials are essential to national economic growth,people’s livelihoods,and social progress.They have been widely used in clothing,aerospace,energy devices,flexible electronics,tissue engineering,and many othe...Fiber materials are essential to national economic growth,people’s livelihoods,and social progress.They have been widely used in clothing,aerospace,energy devices,flexible electronics,tissue engineering,and many other fields.The chemical fiber industry of China was underdeveloped before the early 1980s,and even could not produce enough chemical fiber products for clothing.展开更多
基金supported by Guangdong Industry Technology and Development Fund(No.2011B061200040)Science Foundation of Guangzhou Medical Univesity(Project No.2013A06)Guangdong Natural Science Foundation(No.S2013010014728)
文摘Objective To investigate the serum total IgE (tlgE) and specific IgE (slgE) to common allergens among allergic patients in Guangzhou, China. Methods 7 085 patients were examined for tlgE and slgE to 15 allergens, based on the protocols of reversed enzyme allergosorbent test and the sandwich enzyme-linked immunosorbent assay. Results 3 758 (53.04%) patients tested positive for tlgE, and 4 640 (65.49%) for slgE. Der pteronyssinus, Derfarinae, eggs, and cow's milk were the most common allergens leading to higher positive rates of slgE responses. Several peaks of sensitization were: Der pteronyssinus, Derfarinae, and Blomia tropicalis at age 10-12; cow's milk at age below 3; eggs at age 4-6. The mean level and positive rate of tlgE tended to increase in subjects sensitized to more allergens. Sensitization to Der pteronyssinus (OR, 1.6; P〈O.05), Der farinae (OR, 1.5; P〈O.05), Blomia tropicalis (OR, 1.4; P〈O.05), Blattella germanica (OR, 1.5; P〈O.05), cow's milk (OR, 1.3; P〈O.05), and soy beans (OR, 2.0; P〈O.05) were independently correlated with allergy-related conditions in preliminary diagnosis. Conclusion The major allergens in Guangzhou include Derpteronyssinus, Derfarinae, cow's milk, and eggs. Sensitization to these allergens appears to be predictors of allergy-related disorder.
文摘In recent years,the usage,management and benefit of large-scale scientific research instruments and equipment in scientific research institutes have been a leading issue in the management of scientific research institutes.Within the scope of equipment budget,it is necessary for each equipment acquisition team to conduct a round of communication,coordination and negotiation with suppliers in order to improve the cost performance of equipment procurement and maximize the performance index to meet the needs of scientific research.By introducing the practical experience of the State Key Laboratory in purchasing imported equipment and managing large-scale instruments,this paper probes into the management process of the imported large-scale scientific research tax-free equipment of scientific research institutes,and explores the system and methods to guarantee and improve the efficiency of large-scale instruments in scientific research institutes from the aspects of policy,funds and technology.
文摘The State Key Laboratory of Natural and Biomimetic Drugs was approved for a funding of nearly 100 million yuan specifically aimed at the purchase and maintenance of equipment and instruments from 2018 to 2020,which is a record high.The Laboratory focuses on two major directions of scientific research,the"basic scientific problems of drug resistance of complex components of natural products"and the"key biomimetic scientific problems of endogenous substances therapeutic functions".The selection of scientific instruments and equipment,trial production,upgrading,as well as high level of technical and management personnel allocation and other aspects are critical to meet the development needs of the Key Laboratory and to maintain the advantages and leading role in these two major directions of scientific research.
文摘This year marks the tenth anniversary of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(SKLADOT)at the Hong Kong University of Science and Technology(HKUST).The predecessor of SKLADOT was the Center for Display Research(CDR)which was started in 1995.Thus display research has a long history at HKUST.
文摘·Prof.XIONG,could you please give us a brief introduction to SKLMCMS?Director XIONG Ke:The State Key Laboratory of Mechanics and Control of Mechanical Structures(SKLMCMS)was established with the approval of the Ministry of Science and Technology of the People’s Republic of China in October 2011.The laboratory is located at Nanjing University of Aeronautics and Astronautics(NUAA).
基金supported by the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)No.IPOC2021ZT10BUPT Excellent Ph.D.Students Foundation(Grant No.CX2023207)the BUPT innovation and entrepreneurship support program No.2024-YC-A188。
文摘Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.XT71-20-014).
文摘The power system is experiencing a higher penetration of renewable energy generations(REGs).The short circuit ratio(SCR)and the grid impedance ratio(GIR)are two indices to quantify the system strength of the power system with REGs.In this paper,the critical short circuit ratio(CSCR)is defined as the corresponding SCR when the system voltage is in the critical stable state.Through static voltage stability analysis,the mathematical expression of the CSCR considering the impact of GIR is derived.The maximum value of CSCR is adopted as the critical value to distinguish the weak power system.Based on the static equivalent circuit analysis,it is proved that the CSCR is still effective to evaluate critical system strength considering the interactive impact among REGs.Finally,we find that the GIR can be neglected and the SCR can be used individually to evaluate the system strength when SCR>2 or GIR>5.The correctness and rationality of the CSCR and its critical value are validated on ADPSS.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.
基金supported by the National Natural Science Foundation of China(Nos.51827901,42477191,and 52304033)the Fundamental Research Funds for the Central Universities(No.YJ202449)+1 种基金the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022009)the China Postdoctoral Science Foundation(No.2023M742446).
文摘Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.
基金supported by the National Natural Science Foundation of China(Nos.22171102 and 22090044)the National Key R&D Program of China(Nos.2021YFF0500502 and 2023YFA1506304)+2 种基金the Jilin Province Science and Technology Development Plan(No.20230101024JC)the"Medicine+X"crossinnovation team of Bethune Medical Department of Jilin University"Leading the Charge with Open Competition"construction project(No.2022JBGS04)the Jilin University Graduate Training Office(Nos.2021JGZ08 and 2022YJSJIP20).
文摘Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
基金National Natural Science Foundation of China (52075420)Fundamental Research Funds for the Central Universities (xzy022023049)National Key Research and Development Program of China (2023YFB3408600)。
文摘The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions.
基金supported by the National Natural Science Foundation of China(No.22278041)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K78)+1 种基金Jiangsu Province Key Laboratory of Fine Petrochemical Engineering(No.KF2107)the Advanced Catalysis and Green Manufacturing Collab-orative Innovation Center(No.ACGM2022-10-07)。
文摘Herein,a series of manganese oxide catalysts with different valences(Mn_(3)O_(4),Mn_(2)O_(3),and MnO_(2))were designed and synthesized for the synthesis of ethylene urea(EU)from ethylenediamine(EDA)and carbon dioxide(CO_(2)).With a maximal EDA conversion of 82%and EU selectivity of 99%at 160℃ for 2 h,Mn_(2)O_(3) catalysts had the best catalytic activity among them,which was superior to the reported catalysts.In the following order:Mn_(2)O_(3)>MnO_(2)>Mn_(3)O_(4),the catalytic activity for the synthesis of EU from CO_(2) and EDA decreased.Further characterization showed the Mn_(2)O_(3) catalyst possessed a greater Mn^(3+)/Mn4+ratio and more surface oxygen vacancies than the MnO_(2) and Mn_(3)O_(4),which improved its capacity to adsorb and activate CO_(2) and EDA.After four recycling runs,the EDA conversion slightly declined from 82%to 56%on Mn_(2)O_(3) catalyst,while no obvious change in EU selectivity was observed.The loss of surface Ov contents and Mn^(3+)proportion were concluded as main reasons for the decrease in catalytic activity over Mn_(2)O_(3) catalyst.This work demonstrated a metal oxide catalyst that was efficient in producing EU from CO_(2) and EDA.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
基金supported by the National Natural Science Foundation of China(No.52061135101 and 52001078)the German Research Foundation(DFG,No.448318292)+3 种基金the Technology Innovation Guidance Special Foundation of Shaanxi Province(No.2023GXLH-085)the Fundamental Research Funds for the Central Universities(No.D5000240161)the Project of Key areas of innovation team in Shaanxi Province(No.2024RS-CXTD-20)The author Yingchun Xie thanks the support from the National Key R&D Program(No.2023YFE0108000).
文摘1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.
基金supported by the Beijing Natural Science Foundation(No.L212029)the National Natural Science Foundation of China(No.62271043).
文摘To meet the requirements of electromagnetic(EM)theory and applied physics,this study presents an overview of the state-of-the-art research on obtaining the EM properties of media and points out potential solutions that can break through the bottlenecks of current methods.Firstly,based on the survey of three mainstream approaches for acquiring EM properties of media,we identify the difficulties when implementing them in realistic environments.With a focus on addressing these problems and challenges,we propose a novel paradigm for obtaining the EM properties of multi-type media in realistic environments.Particularly,within this paradigm,we describe the implementation approach of the key technology,namely“multipath extraction using heterogeneous wave propagation data in multi-spectrum cases”.Finally,the latest measurement and simulation results show that the EM properties of multi-type media in realistic environments can be precisely and efficiently acquired by the methodology proposed in this study.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
文摘EngineeringAsking good questions is often a starting point of a revolutionary breakthrough.Good examples include the famous 7 Clay millennium problems and the 125 open questions released in SCIENCE in 2021 at the 125th anniversary of Shanghai Jiaotong University(SJTU),which greatly promote the development in mathematics,science and technology.
文摘Fiber materials are essential to national economic growth,people’s livelihoods,and social progress.They have been widely used in clothing,aerospace,energy devices,flexible electronics,tissue engineering,and many other fields.The chemical fiber industry of China was underdeveloped before the early 1980s,and even could not produce enough chemical fiber products for clothing.