期刊文献+
共找到3,385篇文章
< 1 2 170 >
每页显示 20 50 100
Controllable synthesis of hydrogen-bonded organic framework encapsulated enzyme for continuous production of chiral hydroxybutyric acid in a two-stage cascade microreactor 被引量:1
1
作者 Danyang Zhao Qiangqiang Xue +1 位作者 Yujun Wang Guangsheng Luo 《Chinese Journal of Chemical Engineering》 2025年第1期175-184,共10页
Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded... Constructing a framework carrier to stabilize protein conformation,induce high embedding efficiency,and acquire low mass-transfer resistance is an urgent issue in the development of immobilized enzymes.Hydrogen-bonded organic frameworks(HOFs)have promising application potential for embedding enzymes.In fact,no metal involvement is required,and HOFs exhibit superior biocompatibility,and free access to substrates in mesoporous channels.Herein,a facile in situ growth approach was proposed for the self-assembly of alcohol dehydrogenase encapsulated in HOF.The micron-scale bio-catalytic composite was rapidly synthesized under mild conditions(aqueous phase and ambient temperature)with a controllable embedding rate.The high crystallinity and periodic arrangement channels of HOF were preserved at a high enzyme encapsulation efficiency of 59%.This bio-composite improved the tolerance of the enzyme to the acid-base environment and retained 81%of its initial activity after five cycles of batch hydrogenation involving NADH coenzyme.Based on this controllably synthesized bio-catalytic material and a common lipase,we further developed a two-stage cascade microchemical system and achieved the continuous production of chiral hydroxybutyric acid(R-3-HBA). 展开更多
关键词 Hydrogen-bonded organic framework Immobilized enzyme Synthesis Chiral hydroxycarboxylic acid BIOCATALYSIS Nanostructure
在线阅读 下载PDF
A Laboratorial Testing Scheme for 5G System:Channel Model Principle and Field Experiment Validation
2
作者 Zhang Yuxiang Zhang Jianhua +7 位作者 Kang Yanan Zhao Mengxuan Qi Pan Zhang Zhen Tang Pan Tian Lei Liu Guangyi Yao Yuan 《China Communications》 2025年第9期113-128,共16页
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ... As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations. 展开更多
关键词 channel model field experiment high-speed dynamic time-varying(HDT) multiple-cell-multiple-user-multiple-input-multiple-output(MC-MU-MIMO) testing scheme the fifth generation communication(5G)
在线阅读 下载PDF
Integrated Sensing and Communications Network Design and Key Technologies for Low-Altitude Economy
3
作者 Ma Dingyou Tang Jun +3 位作者 Zhang Qixun Wei Zhiqing Gao Feifei Feng Zhiyong 《China Communications》 2025年第9期81-102,共22页
With the rapid growth of the low-altitude economy,the demand for typical low-altitude ap-plications has accelerated the advancement of inte-grated sensing and communications(ISAC)networks.This paper begins by analyzin... With the rapid growth of the low-altitude economy,the demand for typical low-altitude ap-plications has accelerated the advancement of inte-grated sensing and communications(ISAC)networks.This paper begins by analyzing representative ap-plication scenarios to clarify the core requirements of the low-altitude economy for modern ISAC net-works.By investigating the distinctive characteris-tics of ISAC networks in low-altitude environments,it presents a comprehensive analysis of key challenges and identifies four major issues:challenges in pre-cise target detection,interference management,in-consistent sensing and communication coverage,and the complexity of air-ground coordination and han-dover.Based on fundamental theories and principles,the paper proposes corresponding solutions,encom-passing advanced technologies for precise target de-tection and recognition,high-reliability networked de-tection,robust interference management,and seamless air-ground collaboration.These solutions aim to es-tablish a solid foundation for the future development of intelligent low-altitude networks and ensure effec-tive support for emerging applications. 展开更多
关键词 integrated sensing and communications interference management low-altitude economy target detection
在线阅读 下载PDF
Far-Field vs. Near-Field Propagation Channels: Key Differences and Impact on 6G XL-MIMO Performance Evaluation
4
作者 Ding Zihang Zhang Jianhua +5 位作者 You Changsheng Tang Pan Xing Hongbo Yuan Zhiqiang Meng Jie Liu Guangyi 《China Communications》 2025年第10期186-198,共13页
Extremely large-scale multiple-input multiple-output(XL-MIMO)is regarded as a promis-ing technology for next-generation communication systems.However,this will expand the near-field(NF)range,rendering more users more ... Extremely large-scale multiple-input multiple-output(XL-MIMO)is regarded as a promis-ing technology for next-generation communication systems.However,this will expand the near-field(NF)range,rendering more users more likely to be located in the NF region.In this paper,we aim to answer two questions:What are the new characteristics of the NF channel?Is it necessary to develop new transciver techniques to maintain system performance within the NF region?To this end,we first review current NF channel models and analyze the differences between the existing 3GPP TR 38.901 channel model and the NF channel model,including the spherical wavefront and spatially non-stationarity.Then,we provide ex-amples on how these differences affect the XL-MIMO system performance in terms of beamforming gain and achievable rate.Simulation results demonstrate that,when using far-field(FF)technique under the NF channel,the maximum normalized beam gain loss is less than 3 dB for most users in the NF region de-fined by Rayleigh distance.Moreover,the achievable rate loss of beam training is less than 3%compared to that realized by NF technique.Finally,we demonstrate the necessity of employing NF transceiver techniques based on simulation results. 展开更多
关键词 channel model near-field communica-tion near-field effect spatial non-stationary
在线阅读 下载PDF
An interfacial compatible Ti_(4)P_(8)S_(29) polysulfide cathode with open channels for high-rate solid-state polymer sodium batteries
5
作者 You-Tan Pan Xue Wang +5 位作者 Bai-Xin Peng Ke-Yan Hu Chong Zheng Yu-Qiang Fang Wu-Jie Dong Fu-Qiang Huang 《Rare Metals》 2025年第5期3008-3015,共8页
Solid-state polymer sodium batteries(SPSBs)are promising candidates for achieving higher energy density and safe energy storage.However,interface issues between oxide cathode and solid-state polymer electrolyte are a ... Solid-state polymer sodium batteries(SPSBs)are promising candidates for achieving higher energy density and safe energy storage.However,interface issues between oxide cathode and solid-state polymer electrolyte are a great challenge for their commercial application.In contrast,soft sulfur-based materials feature better interface contact and chemical compatibility.Herein,an interfacial compatible polysulfide Ti_(4)P_(8)S_(29) with robust Ti-S bonding and a highly active P-S unit is tailored as a high-performance cathode for SPSBs.The Ti_(4)P_(8)S_(29) cathode possesses a three-dimensional channel structure for offering ample Na+diffusion pathways.The assembled poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)-based SPSBs deliver a discharge capacity of 136 mAh·g^(-1)at 0.5C after 200 cycles.Furthermore,a discharge capacity of 88 mAh·g^(-1)is retained after 600 cycles at a high rate of 2C,surpassing many cathode materials in SPSBs.A dual-site redox of Ti^(4+)/Ti^(3+)and S^(-)/S^(2-)is verified by X-ray photoelectron spectroscopy(XPS)and cyclic voltammetry(CV)tests.Interestingly,a refined locally-ordered amorphous structure is unveiled by in situ and ex situ characterizations.The as-formed electrode structure with lots of open channels and isotropic properties are more beneficial for ion diffusion on the interface of electrode and solid-state polymer electrolytes(SPEs),leading to faster Na+diffusion kinetics.This work proposes a strategy of modulating open-channel to boost conversion kinetics in polysulfide cathode and opens a new pathway for designing high-performance SPSBs. 展开更多
关键词 Solid-state sodium batteries POLYSULFIDES Ti4P8S29 Open-channel High-rate
原文传递
Constructing A Theoretical Model to Bridge Neural Transition with a State Switch in Bipolar Disorder
6
作者 Xiaonan Guo Lizichen Chen +1 位作者 Jianbo Lai Shaohua Hu 《Neuroscience Bulletin》 2025年第1期181-185,共5页
Reward or stress,which exists extensively,causes resilient emotional fluctuations under common situations.However,reward or stress is a typical trigger for manic or depressive episodes of bipolar disorder(BD),which is... Reward or stress,which exists extensively,causes resilient emotional fluctuations under common situations.However,reward or stress is a typical trigger for manic or depressive episodes of bipolar disorder(BD),which is corroborated by psychological theory,biological findings,and psychosocial treatment approaches[1,2].During an episode of BD,the affective aberration can be persistent and switchable,accompanied by opposite constellations of cognitive and psychomotor symptoms.Characterized by uncontrollable mood ranging in severity,duration,and polarity,to disentangle the pathophysiology mechanism of BD is to delineate the mystery of affective fluctuations driven by reward or stress. 展开更多
关键词 BIPOLAR TRANSITION finding
原文传递
Effect of mesopore spatial distribution of HZSM-5 catalyst on zinc state and product distribution in 1-hexene aromatization 被引量:1
7
作者 Chenhao Wei Di Gao +3 位作者 Guohao Zhang Liang Zhao Jinsen Gao Chunming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期16-26,共11页
1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put ... 1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst. 展开更多
关键词 1-Hexene aromatization Alkali treatment Xylene selectivity MESOPORES Zinc state
在线阅读 下载PDF
Graphene controlled solid-state growth of oxygen vacancies riched V_(2)O_(5)catalyst to highly activate Fenton-like reaction
8
作者 Mengxiang Zhu Tao Ding +8 位作者 Yunzhang Li Yuanjie Peng Ruiping Liu Quan Zou Leilei Yang Shenglei Sun Pin Zhou Guosheng Shi Dongting Yue 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第12期356-359,共4页
Fenton-like process based on metal oxide presents one of the most hoping strategies to generate reactive oxygen species to treat refractory pollutants.The introduction of oxygen vacancies(OVs)can enhance the catalytic... Fenton-like process based on metal oxide presents one of the most hoping strategies to generate reactive oxygen species to treat refractory pollutants.The introduction of oxygen vacancies(OVs)can enhance the catalytic performance of metal oxides in Fenton-like reaction.In this paper,a one-step all solid-state synthesis strategy is proposed to induce oxygen defects in V_(2)O_(5),which uses graphene to engineer the crystallization process of V-based crystals.Such approach employs graphene as a solid-catalyst to promote growth of V-based crystals owing to the ions-πinteractions between graphene and VCl_(3).The electrondonor OVs in V_(2)O_(5)@graphene can not only active H_(2)O_(2)for the·OH generation,but also accelerate the reduction of V^(5+)and V^(4+),thereby ensuring defective V_(2)O_(5)@graphene/H_(2)O_(2)system is 14.3,28.2,and 17.3times higher than that of graphene/H_(2)O_(2),pure V_(2)O_(5)/H_(2)O_(2)and graphene+V_(2)O_(5)/H_(2)O_(2)(mechanical mixed system),respectively.Our study provides a novel synthetic strategy to design and prepare OVs-riched transition metal catalysts for developing advanced oxidation technologies toward higher sustainability and practicality. 展开更多
关键词 Oxygen vacancies FENTON-LIKE CATALYSIS V_(2)O_(5) Solid-state synthesis
原文传递
Direct Photolithography of WO_(x) Nanoparticles for High‑Resolution Non‑Emissive Displays 被引量:2
9
作者 Chang Gu Guojian Yang +7 位作者 Wenxuan Wang Aiyan Shi Wenjuan Fang Lei Qian Xiaofei Hu Ting Zhang Chaoyu Xiang Yu‑Mo Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期297-309,共13页
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta... High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics. 展开更多
关键词 Electrochromic Direct photolithography WOx nanoparticles In situ photo-induced ligand exchange High-resolution displays
在线阅读 下载PDF
Technologies of blockchain interoperability:A survey 被引量:3
10
作者 Haonan Yuan Shufan Fei Zheng Yan 《Digital Communications and Networks》 2025年第1期210-224,共15页
Blockchain technology is increasingly popular and has been widely applied in many industrial fields,due to its unique properties of decentralization,immutability,and traceability.Blockchain systems in different fields... Blockchain technology is increasingly popular and has been widely applied in many industrial fields,due to its unique properties of decentralization,immutability,and traceability.Blockchain systems in different fields vary,with different block structures,consensus mechanisms and access permission models.These differences make it hard for different blockchain systems to interoperate with each other,which isolates them.Cross-chain technologies have been developed to solve this isolation problem in order to improve the interoperability of blockchains.Although some surveys on cross-chain technologies can be found,they are unable to keep up with the latest research progress due to their extremely fast pace of development.Moreover,the literature misses general criteria to evaluate the quality of cross-chain technologies.In this paper,a comprehensive literature review of cross-chain technologies is conducted by employing a comprehensive set of evaluation criteria.The preliminaries on blockchain interoperability are first presented.Then,a set of evaluation criteria is proposed in terms of security,privacy,performance,and functionality.The latest cutting-edge works are reviewed based on the proposed taxonomy of cross-chain technologies and their performance is evaluated against our proposed criteria.Finally,some open issues and future directions of cross-chain research are pointed out. 展开更多
关键词 Blockchain Blockchain interoperability Cross-chain technology
在线阅读 下载PDF
Significant reduction of anisotropy in stress relaxation aging and mechanical properties improvement for 2195 Al-Cu-Li alloy subjected to plastic loading 被引量:2
11
作者 Liwen ZHANG Heng LI +2 位作者 Tianjun BIAN Changhui WU Yanfeng YANG 《Chinese Journal of Aeronautics》 2025年第1期217-234,共18页
Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challe... Although the plastic loading can enhance creep deformation and yield strength,the anisotropic Stress Relaxation Aging(SRA)behavior and mechanism under plastic loading remain unclear,which presents a significant challenge in accurately shaping aluminum alloy panels.In this study,the SRA behavior of 2195-T4 Al-Cu-Li alloys were thoroughly studied under initial loading stresses within the elastic(210/250 MPa)and plastic(380/420 MPa)ranges at 180℃by stress relaxation and tensile tests as well as microstructure characterization.The findings reveal that compared with those under elastic loadings,in-plane anisotropy(IPA)values of the stress relaxation amount,yield strength and fracture elongation under plastic loadings are reduced by 60%–80%,70%–90% and 72%–89%,respectively.Similarly,IPA values of precipitate size in grains and PrecipitationFree Zones(PFZ)width at grain boundaries under plastic loading decrease by 31.4%and 94.4%respectively.These results indicate plastic loading significantly weakens the anisotropic SRA behavior,owing to numerous uniformly distributed fine T1phases and small IPA values of both T1precipitates size and PFZ width in various loading directions.Compared with those of elastic loadingaged alloys,yield strength of plastic loading-aged alloys shows high strength-ductility because of the combined effect of closely dispersed fine T1precipitates,narrowed PFZ and numerous sheared and rotated T1phases at different locations during tensile process.The uniformly distributed larger Kernel Average Misorientation(KAM)and Schmidt factor values of the plastic loading-aged alloy,as well as the cross-slip generated,also help to enhance the strength and ductility of the alloy. 展开更多
关键词 Aluminum-lithium alloy Stress relaxation aging Precipitation-free zones In-plane anisotropy Stress relaxation
原文传递
A review of the progress and challenges of counter-gravity casting 被引量:1
12
作者 Dafan Du Jiatuo An +1 位作者 Anping Dong Baode Sun 《Journal of Materials Science & Technology》 2025年第13期1-26,共26页
Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It ... Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It plays a pivotal role in fabricating intricate,high-quality components.After its inception in the early 1900s,various CGC processes have emerged,such as low-pressure,counter-pressure,vac-uum suction,and adjusted pressure casting,which are explored in this discourse with an eye toward further advancements.Despite CGC’s superiority over traditional gravity casting and other manufacturing methodologies,specific issues and constraints persist within CGC.This paper endeavors to provide a com-prehensive overview of the historical progression of CGC,its recent developments,and the associated re-search aspects,encompassing topics like filling processes,solidification,microstructural transformations,and the resultant mechanical properties of the fabricated products.Additionally,this paper offers insights into the future challenges and opportunities of CGC. 展开更多
关键词 CGC(counter-gravity casting) SOLIDIFICATION FILLING Pressure CASTING
原文传递
Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil 被引量:2
13
作者 Huijuan Duan Yue Yin +5 位作者 Yifei Wang Zhelun Liu Tiangui Cai Dong Zhu Chun Chen Guilan Duan 《Journal of Environmental Sciences》 2025年第4期373-384,共12页
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn... Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. 展开更多
关键词 Reductive soil disinfestation(RSD) Antibiotic resistance genes(ARGs) Bacterial communities Farmland soil Potential pathogens
原文传递
Sulfur-Doped Carbonized Polymer Dots:A Biocompatible Photocatalyst for Rapid Aqueous PET-RAFT Polymerization 被引量:1
14
作者 Yue Yu Songyuan Tao +3 位作者 Qingsen Zeng Zhihui Ma Kai Zhang Bai Yang 《Carbon Energy》 2025年第3期186-195,共10页
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin... To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields. 展开更多
关键词 aqueous PET-RAFT polymerization carbonized polymer dots photocatalysis ultrahigh efficiency
在线阅读 下载PDF
Predicting the efficiency of arsenic immobilization in soils by biochar using machine learning 被引量:1
15
作者 Jin-Man Cao Yu-Qian Liu +5 位作者 Yan-Qing Liu Shu-Dan Xue Hai-Hong Xiong Chong-Lin Xu Qi Xu Gui-Lan Duan 《Journal of Environmental Sciences》 2025年第1期259-267,共9页
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily ... Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency. 展开更多
关键词 BIOCHAR Arsenic immobilization SOIL Machine learning
原文传递
Joint jammer selection and power optimization in covert communications against a warden with uncertain locations 被引量:1
16
作者 Zhijun Han Yiqing Zhou +3 位作者 Yu Zhang Tong-Xing Zheng Ling Liu Jinglin Shi 《Digital Communications and Networks》 2025年第4期1113-1123,共11页
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(... In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP. 展开更多
关键词 Covert communications Uncertain warden Jammer selection Power optimization Throughput maximization
在线阅读 下载PDF
Regulation Active Sites of Porous GaN Crystal Via Mn_(3)O_(4)Nanosheets for Advanced High Temperature Energy Storage 被引量:1
17
作者 Songyang Lv Shouzhi Wang +7 位作者 Qirui Zhang Lin Xu Ge Tian Jiaoxian Yu Guodong Wang Lili Li Xiangang Xu Lei Zhang 《Energy & Environmental Materials》 2025年第3期112-121,共10页
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in... Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor. 展开更多
关键词 active sites density functional theory gallium nitride crystal high temperature SUPERCAPACITORS
在线阅读 下载PDF
Anthropogenic sources and air mass transport affect spatial and seasonal variations of ambient halocarbons in southeastern China 被引量:1
18
作者 Zhaoyang Wu Zhiwei Cao +4 位作者 Xinyi Huang Yonglong Lu Pei Wang Zian Liang Xupeng An 《Journal of Environmental Sciences》 2025年第6期340-352,共13页
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu... Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China. 展开更多
关键词 HALOCARBONS Source apportionment Southeastern China Seasonal variations Montreal Protocol
原文传递
A theoretical and experimental study of deformation mechanism dictated by disclination-dislocation coupling in Mg alloys at different temperatures 被引量:1
19
作者 Chunfeng Du Yipeng Gao +5 位作者 Yizhen Li Quan Li Min Zha Cheng Wang Hailong Jia Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第5期176-188,共13页
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna... Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials. 展开更多
关键词 Magnesium alloys Dislocations Grain boundaries Plastic deformation Grain rotation Disclination-dislocation coupling
原文传递
Seismicity associated with hydraulic fracturing in Changning shale gas field,China:Constraints from source mechanisms,stress field and fluid overpressure thresholds 被引量:1
20
作者 Jingjing Dai Jianfeng Liu +6 位作者 Jianxiong Yang Fujun Xue Lei Wang Xiangchao Shi Shigui Dai Jun Hu Changwu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4061-4076,共16页
Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude ... Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites. 展开更多
关键词 SEISMICITY Sichuan basin Hydraulic fracturing Focal mechanism solution Stress field Triggering mechanism
在线阅读 下载PDF
上一页 1 2 170 下一页 到第
使用帮助 返回顶部