To examine the influences of minor modification of Al content on the microstructural stabilities and stress rupture properties,two alloys with minor difference in Al content were exposed isothermally at 1100℃for 100 ...To examine the influences of minor modification of Al content on the microstructural stabilities and stress rupture properties,two alloys with minor difference in Al content were exposed isothermally at 1100℃for 100 h,500 h,and 1000 h,respectively.The microstructures were characterized before and after thermal exposure.It was found that when Al content was decreased by 0.4 wt%,the volume fractionγ'decreased by 4%,the size ofγ'increased by 40 nm,the matrix channel width increased by 5 nm,and the misfit degree ofγ/γ'phases increased by 0.006%after heat treatment(HT).During thermal exposure,the alloy with low Al content had a better resistance to coarsening ofγ'phase and precipitation ofμphase.Theγ'particles of the alloy with high AI content tended to connect each other and coarsened along<100>directions;however,theγ'particles of the alloy with low Al content remained cubic after 500 h.A serious coarsening behavior took place in the two alloys after aging for 1000 h.The structural stabilities were significantly improved.However,the change of 0.4 wt%Al content was found to have little effect on the high temperature stress-rupture properties.展开更多
基金sponsored by The National Key Research and Development Program of China (No.2018YFB1106600)
文摘To examine the influences of minor modification of Al content on the microstructural stabilities and stress rupture properties,two alloys with minor difference in Al content were exposed isothermally at 1100℃for 100 h,500 h,and 1000 h,respectively.The microstructures were characterized before and after thermal exposure.It was found that when Al content was decreased by 0.4 wt%,the volume fractionγ'decreased by 4%,the size ofγ'increased by 40 nm,the matrix channel width increased by 5 nm,and the misfit degree ofγ/γ'phases increased by 0.006%after heat treatment(HT).During thermal exposure,the alloy with low Al content had a better resistance to coarsening ofγ'phase and precipitation ofμphase.Theγ'particles of the alloy with high AI content tended to connect each other and coarsened along<100>directions;however,theγ'particles of the alloy with low Al content remained cubic after 500 h.A serious coarsening behavior took place in the two alloys after aging for 1000 h.The structural stabilities were significantly improved.However,the change of 0.4 wt%Al content was found to have little effect on the high temperature stress-rupture properties.