Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRP...Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRPs)through laser-assisted metal and plastic direct joining(LAMP).This study uses the LAMP technique to produce AZ31-CFRP joints.The joining process involves as-received AZ31,HFpretreated AZ31,and thermally oxidized HF-pretreated AZ31 alloy sheets.Furthermore,the bonding strength of joints prepared with thermally oxidized AZ31 alloy sheets is examined to ascertain the combined effect of HF treatment and thermal oxidation on bonding strength.The microstructures,surface chemical interactions,and mechanical performances of joints are investigated under tensile shear loading.Various factors,such as bubble formation,CFRP resin decomposition,and mechanical interlocking considerably affect joint strength.Additionally,surface chemical interactions between the active species on metal parts and the polar amide along with carbonyl groups of polymer play a significant role in improving joint strength.Joints prepared with surface-pretreated AZ31 alloy sheets show significant improvements in bonding strength.展开更多
Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutation...Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum.展开更多
This paper proposes new interference estimation for power control in broadband wireless data networks. The proposed approach gives the filtered interference power in real-time removing undesired effects such as the fl...This paper proposes new interference estimation for power control in broadband wireless data networks. The proposed approach gives the filtered interference power in real-time removing undesired effects such as the fluctuation of interference power and the measurement noise due to receiver noise. The well-known Finite Impulse Response (FIR) structure filter is adopted for both the interference and the noise covarianee estimation. The proposed mechanism provides both the filtered interference power and the filtered number of active co-channel interferers, which shows good inherent properties. And the filtered interference power is not affected by the constant number of active co-channel interferes. It is also shown that the filtered number of active co-channel interference is separated from the filtered interference power. From discussions about the choice of design parameters such as window length and eovariance ratio, they can make the estimation performance of the proposed FIR filtering based mechanism as good as possible. Via extensive computer simulations, the performance of the proposed mechanism is shown to be superior to the existing Kalman filtering based mechanism.展开更多
The new measurement scheme of IP performance metrics is for the mobile network in heterogeneous wireless network environment. In the proposed scheme, when Mobile Nodes (MNs) inside the mobile network needs to under...The new measurement scheme of IP performance metrics is for the mobile network in heterogeneous wireless network environment. In the proposed scheme, when Mobile Nodes (MNs) inside the mobile network needs to understand the condition of multiple comrmunicatinn paths outside the mobile netwtrk, they can get IP performance metrics, such as delay, jitter, bandwidth, packet loss, etc., irrespective of the preserre or absence of measurement functionality. At the same time, the proposed scheme dees not require the MN to he involved in measuring IP performance metrice. The Multihomed Mobile Router (MMR) with heterogeneons wireless interfaces measures IP performance metrics on behalf of the MNs inside the mobile network. Then, MNs can get measured IP perfonmnce metries from the MMR using L3 messages. The proposed scheme can reduce burden and power consumption of MNs with limited resource and batty power since MNs don' t measure IP performance metrics directly. In addition, it can reduce considerably traffic overhead over wireless links on multiple measurement paths since signaling messages and injeeted testing traffic are reduced.展开更多
Hybrid organic-inorganic perovskite photodetectors have gained significant attention due to their superior potential for optoelectronic applications,offering various advantages such as low-cost processing,high charge ...Hybrid organic-inorganic perovskite photodetectors have gained significant attention due to their superior potential for optoelectronic applications,offering various advantages such as low-cost processing,high charge carrier mobility,and lightweight properties.However,these perovskite photodetectors exhibit relatively low absorption in the near-infrared(NIR)range,which limits their potential applications.Here,to address this challenge,the integration of gold nanorods(Au NRs)utilizing localized surface plasmon resonance(LSPR)effects in the NIR range has been developed,leading to enhanced light absorption in the active region and higher photocurrent generation.Additionally,∼7.9 nm of thin polyethyleneimine ethoxylated(PEIE)interlayers were incorporated into the Au NR photodetectors,suppressing dark current by blocking charge injection.As a result,the synergistic effect of the Au NR/PEIE hybrid layer has led to a high-performance photodetector with a responsivity of 0.360 A/W and a detectivity of 1.81×10^(10) Jones,demonstrating a noticeable enhancement compared to the control device.Finite-difference time-domain(FDTD)simulations,morphological characterizations,and photoluminescence studies further support the mechanism for enhancing the performance of the device.We believe that our plasmon-enhanced protocol holds strong potential as a promising platform for perovskite optoelectronic devices.展开更多
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(RS-2023-00234757).
文摘Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRPs)through laser-assisted metal and plastic direct joining(LAMP).This study uses the LAMP technique to produce AZ31-CFRP joints.The joining process involves as-received AZ31,HFpretreated AZ31,and thermally oxidized HF-pretreated AZ31 alloy sheets.Furthermore,the bonding strength of joints prepared with thermally oxidized AZ31 alloy sheets is examined to ascertain the combined effect of HF treatment and thermal oxidation on bonding strength.The microstructures,surface chemical interactions,and mechanical performances of joints are investigated under tensile shear loading.Various factors,such as bubble formation,CFRP resin decomposition,and mechanical interlocking considerably affect joint strength.Additionally,surface chemical interactions between the active species on metal parts and the polar amide along with carbonyl groups of polymer play a significant role in improving joint strength.Joints prepared with surface-pretreated AZ31 alloy sheets show significant improvements in bonding strength.
基金funding by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development(ADD)funded by the Defense Acquisition Program Administration(DAPA)in 2023(No.915024201).
文摘Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum.
文摘This paper proposes new interference estimation for power control in broadband wireless data networks. The proposed approach gives the filtered interference power in real-time removing undesired effects such as the fluctuation of interference power and the measurement noise due to receiver noise. The well-known Finite Impulse Response (FIR) structure filter is adopted for both the interference and the noise covarianee estimation. The proposed mechanism provides both the filtered interference power and the filtered number of active co-channel interferers, which shows good inherent properties. And the filtered interference power is not affected by the constant number of active co-channel interferes. It is also shown that the filtered number of active co-channel interference is separated from the filtered interference power. From discussions about the choice of design parameters such as window length and eovariance ratio, they can make the estimation performance of the proposed FIR filtering based mechanism as good as possible. Via extensive computer simulations, the performance of the proposed mechanism is shown to be superior to the existing Kalman filtering based mechanism.
文摘The new measurement scheme of IP performance metrics is for the mobile network in heterogeneous wireless network environment. In the proposed scheme, when Mobile Nodes (MNs) inside the mobile network needs to understand the condition of multiple comrmunicatinn paths outside the mobile netwtrk, they can get IP performance metrics, such as delay, jitter, bandwidth, packet loss, etc., irrespective of the preserre or absence of measurement functionality. At the same time, the proposed scheme dees not require the MN to he involved in measuring IP performance metrice. The Multihomed Mobile Router (MMR) with heterogeneons wireless interfaces measures IP performance metrics on behalf of the MNs inside the mobile network. Then, MNs can get measured IP perfonmnce metries from the MMR using L3 messages. The proposed scheme can reduce burden and power consumption of MNs with limited resource and batty power since MNs don' t measure IP performance metrics directly. In addition, it can reduce considerably traffic overhead over wireless links on multiple measurement paths since signaling messages and injeeted testing traffic are reduced.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(Nos.2020R1A2C3003958 and 2021R1C1C2010169)the Basic Science Research Program(Priority Research Institute)through the NRF of Korea funded by the Ministry of Education(No.2021R1A6A1A10039823)the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(No.2020R1A6C101B194).
文摘Hybrid organic-inorganic perovskite photodetectors have gained significant attention due to their superior potential for optoelectronic applications,offering various advantages such as low-cost processing,high charge carrier mobility,and lightweight properties.However,these perovskite photodetectors exhibit relatively low absorption in the near-infrared(NIR)range,which limits their potential applications.Here,to address this challenge,the integration of gold nanorods(Au NRs)utilizing localized surface plasmon resonance(LSPR)effects in the NIR range has been developed,leading to enhanced light absorption in the active region and higher photocurrent generation.Additionally,∼7.9 nm of thin polyethyleneimine ethoxylated(PEIE)interlayers were incorporated into the Au NR photodetectors,suppressing dark current by blocking charge injection.As a result,the synergistic effect of the Au NR/PEIE hybrid layer has led to a high-performance photodetector with a responsivity of 0.360 A/W and a detectivity of 1.81×10^(10) Jones,demonstrating a noticeable enhancement compared to the control device.Finite-difference time-domain(FDTD)simulations,morphological characterizations,and photoluminescence studies further support the mechanism for enhancing the performance of the device.We believe that our plasmon-enhanced protocol holds strong potential as a promising platform for perovskite optoelectronic devices.