The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir s...The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir sedimentation and water quality degradation,which exerted a lot of adverse effects on agricultural production in the local irrigation areas.Based on field investigations on dozens of irrigation reservoirs there,laboratory tests were carried out to quantitatively analyze the freeze-thaw effect on the soil engineering characteristics to reveal the facilitation on the bank slope instability.The results show that the softening characteristics of the stressstrain curves gradually weaken,the effective cohesions decline exponentially,the seepage coefficients enlarge,and the thermal conductivities decrease after 7 freeze-thaw cycles.The freeze-thaw effect on the specimens with low confining pressures,low dry densities and high water contents is more significant.The water migration and the phase transition between water and ice result in the variations of the soil internal microstructures,which is the main factor affecting the soil engineering characteristics.Sufficient water supply and the alternation of positive and negative temperatures at the reservoir bank slopes in cold regions make the water migration and phase transition in the soil very intensely.It is easy to form a large number of pores and micro cracks in the soil freezing and thawing areas.The volume changes of the soil and the water migration are difficult to reach a dynamic balance in the open system.Long-term freeze-thaw cycles will bring out the fragmentation of the soil particles,resulting in that the micro cracks on the soil surfaces are developing continuously.The soil of the bank slopes will fall or collapse when these cracks penetrate,which often happens in winter there.展开更多
The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of proje...The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of projects.Lianghekou Hydropower Station(LHS),is a controlling station with the largest installed capacity among the 7 middle reach projects in the Yalong River,the secondary tributary of the Yangtze River.LHS is located in a seasonally frozen soil area.Based on the measured data of air and ground temperature in winter in the dam core wall,the freezing-thawing variation of gravelly soil and contact clay during the filling process of the core wall are compared and analyzed,then the main impact factors of the freezing-thawing variation of soils are discussed.The results show that under the influence of air temperature,soil freezes unidirectionally from ground surface downward and deepens gradually,and the thawing processes are different at the aspects of thawing direction and rate.Air temperature and physical properties of soil including soil type,moisture content and dry density affect the freezingthawing processes of soils.And the impact of engineering construction is more remarkable than natural factors.The engineering construction affects soil temperature and freezing-thawing process by controlling the initial temperature of soil,the speed and duration of the technological conversion of paving,compaction,and the length of placed duration at night.Due to the long placed duration of soil with the slow construction method,the initial temperature of soil gradually reduces,the heat transfer process inside soil is fast.Then the internal heat of soil releases,the decreasing rate of ground temperature of soil at different depths is fast and the frozen depth deepens.While due to the short placed duration of soil with the rapid construction process,the initial temperature of soil is high,high internal heat of soil is supplied every day,and the heat transfer process inside soil is slow.Then the decreasing rate of temperature of soil at different depths is slow,and the variation amplitude of frozen depth is small.This study provides useful guidance for the freezingthawing prevention during the construction process of core wall dams located at high altitude region in winter.展开更多
Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced f...Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.展开更多
The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the phy...The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils.展开更多
The source region of the Yellow River(SRYR),with its semi-humid to semi-arid climate,is crucial for understanding water resource dynamics.Precipitation is key for replenishing surface water and balancing the ecosystem...The source region of the Yellow River(SRYR),with its semi-humid to semi-arid climate,is crucial for understanding water resource dynamics.Precipitation is key for replenishing surface water and balancing the ecosystem’s water cycle.However,the soil moisture response to precipitation across climate zones and soil layers remains poorly understood due to limited long-term data.This study examines the response of soil moisture to precipitation at multiple time scales in the SRYR,using data from Maqu,Mado,Ngoring Lake sites,and the Maqu monitoring network(MMN),along with CN05.1 precipitation and GLEAM v3.8a soil moisture data.Results show that the semi-humid area requires more precipitation to trigger soil moisture responses compared to the semi-arid area in the SRYR.Surface soil at Maqu,MMN,Ngoring Lake,and Mado sites require at least 8.6,8.4,5.2,and 2.84 mm of precipitation,respectively,for effective replenishment.Significant responses to precipitation events were observed in soil layers at 40 cm and above in the semi-humid area,while at 20 cm and above in the semi-arid area.Precipitation volume is the primary factor influencing soil moisture,affecting both the increment and time lag to maximum moisture.Precipitation intensity and pre-rain moisture have no direct effect.In the central SRYR,accumulated precipitation has a greater impact.Root-zone soil moisture has a weaker correlation with precipitation compared to surface soil moisture but persists longer,responding for up to 10 days,while surface soil moisture responds more immediately but only lasts about 5 days.展开更多
Since scarce knowledge of soil mercury(Hg)concentrations and risks in the vulnerable Xinjiang,topsoils(0-15 cm)from its typical landscapes were extensively sampled.Topsoil total mercury(THg)concentrations varied broad...Since scarce knowledge of soil mercury(Hg)concentrations and risks in the vulnerable Xinjiang,topsoils(0-15 cm)from its typical landscapes were extensively sampled.Topsoil total mercury(THg)concentrations varied broadly between 0.9 and 35.3 ng/g,of which16.8%exceeded the background value of soil Hg for Xinjiang.Topsoil THg concentrations across various landscapes exhibited a declining order:farmland(11.7±6.0 ng/g)>grassland(10.5±8.5 ng/g)>woodland(10.2±8.2 ng/g)>desert(7.0±5.8 ng/g).The average topsoil THg concentration was higher in northwestern Xinjiang(11.3±7.2 ng/g)than that in southeastern Xinjiang(6.3±6.1 ng/g).Relatively high topsoil THg concentrations were observed near the cities with intensive human activities,followed by a gradual decline to the surroundings.The concentrations of topsoil THg were strongly correlated with the contents of total organic carbon(TOC),clay,silty,and sandy,and the distance from each sampling site to its nearest city,suggesting that the variation of topsoil Hg was significantly influenced by TOC content,soil granularity,and anthropogenic Hg emissions.Silty and TOC were the principal affecting factors,explaining 48.7%and 7.9%of the THg variation,respectively.The contamination and potential ecological risk evaluations revealed that topsoils in regions with dense populations were polluted with Hg and contained higher potential ecological risks.The health risk evaluations indicated that exposure risks of topsoil Hg were higher for children than those for adults.Fortunately,topsoil Hg posed acceptable risks to human health.展开更多
Due to the high water content in warm frozen soil,the pore water pressure and pore ice pressure generated within the sample during loading significantlyinfluencethe deformation and strength of the soil skeleton.Theref...Due to the high water content in warm frozen soil,the pore water pressure and pore ice pressure generated within the sample during loading significantlyinfluencethe deformation and strength of the soil skeleton.Therefore,it is essential to develop a constitutive model for warm frozen soil that can capture the changes in ice pressure and water pressure.This study introduces a macro-meso constitutive model based on a binary-medium framework to describe the mechanical behavior of warm frozen soil.In this model,warm frozen soil is conceptualized as consisting of bonded and frictional elements from a meso perspective.The bonded elements are modeled using a macro-meso elastic constitutive approach based on poromechanics,while the frictional elements employ a macro-meso elastoplastic approach,also grounded in poromechanics.These two elements are then linked within the binarymedium model framework.By replicating the experimental curves of warm frozen soils,the theoretical results from the proposed model show excellent agreement with experimental data.This consistency indicates that the model effectively simulates the strain softening and volumetric expansion behaviors of warm frozen soil samples under various conditions.Additionally,the constitutive model predicts changes in unfrozen water pressure,frozen temperature,unfrozen water saturation,and porosity during the loading process of warm frozen soil samples.展开更多
Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in a...Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.展开更多
This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ...This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.展开更多
Affected by climate warming and anthropogenic disturbances,the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC)is continuously decreased,which may delay...Affected by climate warming and anthropogenic disturbances,the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC)is continuously decreased,which may delay the construction of major projects in the future.In this study,based on chemical stabilization of warm and icerich frozen ground,the soil-cement column(SCC)for ground improvement was recommended to reinforce the foundations in warm and ice-rich permafrost regions.To explore the validity of countermeasures mentioned above,both the original foundation and the composite foundation consisting of SCC with soil temperature of-1.0℃were prepared in the laboratory,and then the plate loading tests were carried out.The laboratory investigations indicated that the bearing capacity of composite foundation consisting of SCC was higher than that of original foundation,and the total deformation of original foundation was greater than that of composite foundation,meaning that overall stability of foundation with warm and ice-rich frozen soil can be improved by SCC installation.Meanwhile,a numerical model considering the interface interaction between frozen soil and SCC was established for interpretating the bearing mechanism of composite foundation.The numerical investigations revealed that the SCC within composite foundation was responsible for the more applied load,and the applied load can be delivered to deeper zone in depth due to the SCC installation,which was favorable for improving the bearing characteristic of composite foundation.The investigations provide the valuable guideline for the choice of engineering supporting techniques to major projects within the QTEC.展开更多
Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monito...Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monitoring in Tajikistan was interrupted after 1991,creating a substantial gap in understanding the current state and temporal evolution of these glaciers.Based on glacier inventory data,in situ measurements,and published literature,this study examined the present status and recent variations of glaciers in Tajikistan through data integration and validation,literature collation and comparative analysis,and the application of Geographic Information System(GIS)spatial analysis techniques.As of 2023,Tajikistan possesses a total of 11,528 glaciers,encompassing an area of 7624.48(±305.58)km2.Small glaciers dominate in number,whereas large glaciers account for the majority of the total area.Over the past two decades,the glacier count has decreased by 2014,and the total area has decreased by 628.98 km2,corresponding to an average annual reduction rate of 0.33%.Regional shrinkage rates range from 4.10%to 22.28%.Glaciers have undergone accelerated mass loss during the past 20 a;only those on the northeastern Pamir Plateau exhibit a weak positive mass balance.Observations of typical monitored glaciers also reveal intensified melting and retreat,consistent with regional trends.In light of the recent acceleration of glacier shrinkage in Tajikistan,focused measures should be implemented to strengthen glacier monitoring,enhance public awareness of glacier preservation,and promote the sustainable development and utilization of glacier tourism.These findings bridge the knowledge gap regarding the spatiotemporal dynamics of Tajikistan’s glaciers over recent decades and provide essential data support for regional water resource management.展开更多
Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallizat...Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction.展开更多
Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. H...Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. However, uneven subsidence, pavement cracks and other related damages can affect the integrity of loess subgrade after several years of operation,and even cause some hazards, especially in North China, where the strong freeze-thaw erosion occurs. In this study, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement,microstructure, and the related mechanisms were addressed. The experimental results showed that an obvious water migration and redistribution occurred within the samples during freeze-thaw cycles. Ice lenses and fissures could be identified in the upper frozen layers of the samples. After freeze-thaw cycles,the dry densities of the upper layers of samples changed significantly due to strong freeze-thaw erosion. The dry densities decreased for the dense sample and increased for the loose sample. It can be found that dense samples become loose, while loose samples became dense with the increasing number of freeze-thaw cycles. Their related void ratios changed reversely. Both void ratios tended to fall into a certain range, which verified the concept of a residual void ratio proposed by Viklander. The loosening process of densely compacted samples involves the formation of large pores, volume increase and density reduction as well as the related changes in mechanical properties because freeze-thaw cycles may be important contribution to problems of loess road embankments.Adverse effects of freeze-thaw cycles, therefore,should be taken into account in selecting loess parameters for the stability evaluation of road embankment in seasonally frozen ground regions.展开更多
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in t...Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.展开更多
Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of thi...Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.展开更多
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet ...The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.展开更多
The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at th...The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at the temperatures of -3 ℃, -8 ℃, -13℃, -17℃, -23℃, and -28℃ and with the strain rates from 900 s^-1 to 1500 s^-1. The nearly uniaxial stress-strain curves exhibit an elastic-plastic behavior, whereas the uniaxial stress-strain curves show a brittle behavior. The compressive strength of the frozen soil exhibits the positive strain rate and negative temperature sensitivity, and the final strain of the frozen soil shows the positive strain under the nearly uniaxial strain is greater rate sensitivity. The strength of the frozen soil than that under the uniaxial stress. After the negative confinement tests, the specimens are compressed, and the visible cracks are not observed. However, the specimens are catastrophically damaged after the uniaxial SHPB tests. A phenomenological model with the thermal sensitivity is established to describe the dynamic behavior of the confined frozen soil.展开更多
In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafro...In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃.展开更多
With the development of cold region engineering,it is crucial to study the mechanical properties of frozen soil.In practice,frozen soil is inevitably subject to impact loading,making the study of frozen soil under imp...With the development of cold region engineering,it is crucial to study the mechanical properties of frozen soil.In practice,frozen soil is inevitably subject to impact loading,making the study of frozen soil under impact loading necessary for engineering in cold regions.The split–Hopkinson pressure bar(SHPB)is an important experimental means for obtaining the dynamic performance of materials.In this study,an SHPB experiment was conducted on frozen soil under confining pressure.The frozen soil exhibited an evident strain rate effect and temperature effect under confining pressure.The SHPB experiment on frozen soil under confining pressure was simulated numerically using LS-DYNA software and the Holmquist–Johnson–Cook(HJC)material model.A loading simulation with passive confining pressure and active confining pressure was completed by adding an aluminum sleeve and applying a constant load.The simulation results obtained using the above methods were in good agreement with the experimental results.The strength of the frozen soil under confining pressure was greater than that of the uniaxial impact,and there was an evident confining pressure effect.Furthermore,the confining pressure provided by passive confinement was larger than that provided by active confinement.The passive confining pressure energy absorption efficiency was higher than for the active confining pressure due to the need to absorb more energy under the same damage conditions.The frozen soil exhibited viscoplastic failure characteristics under confining pressure.展开更多
By taking the frozen soil as a particle-reinforced composite material which consists of clay soil (i.e., the matrix) and ice particles, a micromechanical constitutive model is established to describe the dynamic com...By taking the frozen soil as a particle-reinforced composite material which consists of clay soil (i.e., the matrix) and ice particles, a micromechanical constitutive model is established to describe the dynamic compressive deformation of frozen soil. The proposed model is constructed by referring to the debonding damage theory of composite materials, and addresses the effects of strain rate and temperature on the dynamic compressive deformation of frozen soil. The proposed model is verified through comparison of the predictions with the corresponding dynamic experimental data of frozen soil obtained from the split Hopkinson pressure bar (SHPB) tests at different high strain rates and temperatures. It is shown that the predictions agree well with the experimental results.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2018YFC0809605,2018YFC0809600)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDY-SSWDQC015)+2 种基金the National Natural Science Foundation of China(Grant No.41230630)the National Science Fund for Distinguished Young Scholars(Grant No.41825015)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-ZS-2020-1)。
文摘The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir sedimentation and water quality degradation,which exerted a lot of adverse effects on agricultural production in the local irrigation areas.Based on field investigations on dozens of irrigation reservoirs there,laboratory tests were carried out to quantitatively analyze the freeze-thaw effect on the soil engineering characteristics to reveal the facilitation on the bank slope instability.The results show that the softening characteristics of the stressstrain curves gradually weaken,the effective cohesions decline exponentially,the seepage coefficients enlarge,and the thermal conductivities decrease after 7 freeze-thaw cycles.The freeze-thaw effect on the specimens with low confining pressures,low dry densities and high water contents is more significant.The water migration and the phase transition between water and ice result in the variations of the soil internal microstructures,which is the main factor affecting the soil engineering characteristics.Sufficient water supply and the alternation of positive and negative temperatures at the reservoir bank slopes in cold regions make the water migration and phase transition in the soil very intensely.It is easy to form a large number of pores and micro cracks in the soil freezing and thawing areas.The volume changes of the soil and the water migration are difficult to reach a dynamic balance in the open system.Long-term freeze-thaw cycles will bring out the fragmentation of the soil particles,resulting in that the micro cracks on the soil surfaces are developing continuously.The soil of the bank slopes will fall or collapse when these cracks penetrate,which often happens in winter there.
基金supported by National Natural Science Funds of China(Nos.41771066,41825015)the Science and Technology Project of Yalong River Hydropower Development Company(No.LHKA-G201906)。
文摘The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of projects.Lianghekou Hydropower Station(LHS),is a controlling station with the largest installed capacity among the 7 middle reach projects in the Yalong River,the secondary tributary of the Yangtze River.LHS is located in a seasonally frozen soil area.Based on the measured data of air and ground temperature in winter in the dam core wall,the freezing-thawing variation of gravelly soil and contact clay during the filling process of the core wall are compared and analyzed,then the main impact factors of the freezing-thawing variation of soils are discussed.The results show that under the influence of air temperature,soil freezes unidirectionally from ground surface downward and deepens gradually,and the thawing processes are different at the aspects of thawing direction and rate.Air temperature and physical properties of soil including soil type,moisture content and dry density affect the freezingthawing processes of soils.And the impact of engineering construction is more remarkable than natural factors.The engineering construction affects soil temperature and freezing-thawing process by controlling the initial temperature of soil,the speed and duration of the technological conversion of paving,compaction,and the length of placed duration at night.Due to the long placed duration of soil with the slow construction method,the initial temperature of soil gradually reduces,the heat transfer process inside soil is fast.Then the internal heat of soil releases,the decreasing rate of ground temperature of soil at different depths is fast and the frozen depth deepens.While due to the short placed duration of soil with the rapid construction process,the initial temperature of soil is high,high internal heat of soil is supplied every day,and the heat transfer process inside soil is slow.Then the decreasing rate of temperature of soil at different depths is slow,and the variation amplitude of frozen depth is small.This study provides useful guidance for the freezingthawing prevention during the construction process of core wall dams located at high altitude region in winter.
基金supported by the Open Fund of State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE201806)the National Natural Science Foundation of China (Grant No.42177155).
文摘Sudden temperature drops cause soils in natural environments to freeze unidirectionally,resulting in soil expansion and deformation that can lead to damage to engineering structures.The impact of temperature-induced freezing on deformation and solute migration in saline soils,especially under extended freezing,is not well understood due to the lack of knowledge regarding the microscopic mechanisms involved.This study investigated the expansion,deformation,and water-salt migration in chlorinated saline soils,materials commonly used for canal foundations in cold and arid regions,under different roof temperatures and soil compaction levels through unidirectional freezing experiments.The microscopic structures of saline soils were observed using scanning electron microscopy(SEM)and optical microscopy.A quantitative analysis of the microstructural data was conducted before and after freezing to elucidate the microscopic mechanisms of water-salt migration and deformation.The results indicate that soil swelling is enhanced by elevated roof temperatures approaching the soil's freezing point and soil compaction,which prolongs the duration and accelerates the rate of water-salt migration.The unidirectional freezing altered the microstructure of saline soils due to the continuous temperature gradients,leading to four distinct zones:natural frozen zone,peak frozen zone,gradual frozen zone,and unfrozen zone,each exhibiting significant changes in pore types and fractal dimensions.Vacuum suction at the colder end of the soil structure facilitates the upward migration of salt and water,which subsequently undergoes crystallization.This process expands the internal pore structure and causes swelling.The findings provide a theoretical basis for understanding the evolution of soil microstructure in cold and arid regions and for the management of saline soil engineering.
基金the financial support from the National Natural Science Foundation of China(Nos.42471155,U2004181,and 41371092)partially supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2024D025)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China(No.SKLFSE201917)the Key Scientific and Technological Project of Henan Province,China(No.192102310503)the National Key Scientific and Technological Project of Henan Province Office of Education,China(No.14B170007)。
文摘The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils.
基金supported by the National Natural Science Foundation of China(Grant No.42325502,and 42275045)the West Light Foundation of the Chi-nese Academy of Sciences(Grant No.xbzg-zdsys-202215)+1 种基金the Sci-ence and Technology Research Plan of Gansu Province(Grant Nos.23JRRA654 and 20JR10RA070)iLEAPs(Integrated Land Ecosystem-Atmosphere Processes Study).
文摘The source region of the Yellow River(SRYR),with its semi-humid to semi-arid climate,is crucial for understanding water resource dynamics.Precipitation is key for replenishing surface water and balancing the ecosystem’s water cycle.However,the soil moisture response to precipitation across climate zones and soil layers remains poorly understood due to limited long-term data.This study examines the response of soil moisture to precipitation at multiple time scales in the SRYR,using data from Maqu,Mado,Ngoring Lake sites,and the Maqu monitoring network(MMN),along with CN05.1 precipitation and GLEAM v3.8a soil moisture data.Results show that the semi-humid area requires more precipitation to trigger soil moisture responses compared to the semi-arid area in the SRYR.Surface soil at Maqu,MMN,Ngoring Lake,and Mado sites require at least 8.6,8.4,5.2,and 2.84 mm of precipitation,respectively,for effective replenishment.Significant responses to precipitation events were observed in soil layers at 40 cm and above in the semi-humid area,while at 20 cm and above in the semi-arid area.Precipitation volume is the primary factor influencing soil moisture,affecting both the increment and time lag to maximum moisture.Precipitation intensity and pre-rain moisture have no direct effect.In the central SRYR,accumulated precipitation has a greater impact.Root-zone soil moisture has a weaker correlation with precipitation compared to surface soil moisture but persists longer,responding for up to 10 days,while surface soil moisture responds more immediately but only lasts about 5 days.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0605)the National Natural Science Foundation of China(No.42201161)the Startup Foundation for Introducing Talent of NUIST(No.2022r024)。
文摘Since scarce knowledge of soil mercury(Hg)concentrations and risks in the vulnerable Xinjiang,topsoils(0-15 cm)from its typical landscapes were extensively sampled.Topsoil total mercury(THg)concentrations varied broadly between 0.9 and 35.3 ng/g,of which16.8%exceeded the background value of soil Hg for Xinjiang.Topsoil THg concentrations across various landscapes exhibited a declining order:farmland(11.7±6.0 ng/g)>grassland(10.5±8.5 ng/g)>woodland(10.2±8.2 ng/g)>desert(7.0±5.8 ng/g).The average topsoil THg concentration was higher in northwestern Xinjiang(11.3±7.2 ng/g)than that in southeastern Xinjiang(6.3±6.1 ng/g).Relatively high topsoil THg concentrations were observed near the cities with intensive human activities,followed by a gradual decline to the surroundings.The concentrations of topsoil THg were strongly correlated with the contents of total organic carbon(TOC),clay,silty,and sandy,and the distance from each sampling site to its nearest city,suggesting that the variation of topsoil Hg was significantly influenced by TOC content,soil granularity,and anthropogenic Hg emissions.Silty and TOC were the principal affecting factors,explaining 48.7%and 7.9%of the THg variation,respectively.The contamination and potential ecological risk evaluations revealed that topsoils in regions with dense populations were polluted with Hg and contained higher potential ecological risks.The health risk evaluations indicated that exposure risks of topsoil Hg were higher for children than those for adults.Fortunately,topsoil Hg posed acceptable risks to human health.
基金the financial support from the funding of the National Natural Science Foundation of China(NSFC)(Grant Nos.42401160 and U22A20596)the Science and Technology Plan Project of Linzhi(Grant No.SYQ2024-13).
文摘Due to the high water content in warm frozen soil,the pore water pressure and pore ice pressure generated within the sample during loading significantlyinfluencethe deformation and strength of the soil skeleton.Therefore,it is essential to develop a constitutive model for warm frozen soil that can capture the changes in ice pressure and water pressure.This study introduces a macro-meso constitutive model based on a binary-medium framework to describe the mechanical behavior of warm frozen soil.In this model,warm frozen soil is conceptualized as consisting of bonded and frictional elements from a meso perspective.The bonded elements are modeled using a macro-meso elastic constitutive approach based on poromechanics,while the frictional elements employ a macro-meso elastoplastic approach,also grounded in poromechanics.These two elements are then linked within the binarymedium model framework.By replicating the experimental curves of warm frozen soils,the theoretical results from the proposed model show excellent agreement with experimental data.This consistency indicates that the model effectively simulates the strain softening and volumetric expansion behaviors of warm frozen soil samples under various conditions.Additionally,the constitutive model predicts changes in unfrozen water pressure,frozen temperature,unfrozen water saturation,and porosity during the loading process of warm frozen soil samples.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0208)the National Natural Science Foundation of China(Nos.42171148 and 42330512)the Key R&D Project from the Science and Technology Department of Tibet(No.XZ202501ZY0030).
文摘Nitrogen(N)and phosphorus(P)are essential nutrients and can significantly impact primary productivity of the ecosystem causing water environmental problems.However,their cycling mechanisms are not well understood in alpine mountains with climate change.Hence,94 samples of river water were collected from 2018 to 2020 in the headwaters of the Shule River Basin to assess the nutrients spatiotemporal distribution and combined ap-proach of water quality index to assess water quality and potential sources.The findings depict that high nutrient concentrations were found to coincide with snowmelt and glacial meltwater and rainfall recharge periods,while total flux peaked from June to September due to increased runoff.Notably,total nitrogen(TN)concentrations were significantly higher near the town,primarily attributed to the replenishment of nitrate(NO_(3)^(‒)-N)from live-stock manure.The high total P(TP)was near the glacier,which was attributed to the transportation of glacial sediments into the river,and pH was another critical factor.N was the primary nutrient limiting factor for the growth of phytoplankton in river water.Although the migration and transport of nutrients have altered with climate change,river water quality is good in alpine mountains based on an overall evaluation.These findings contribute to enriching nutrient datasets and highlight the importance of water resource management and water quality assessment in sensitive and fragile alpine mountains.
基金Funded by the Science and Technology Program of Gansu Province(Nos.25JRRA497,23ZDFA017)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0950000)High-level Talent Funding of Kashi。
文摘This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance.
基金supported by the National Natural Science Foundation of China(No.41471062,No.41971085,No.41971086)。
文摘Affected by climate warming and anthropogenic disturbances,the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC)is continuously decreased,which may delay the construction of major projects in the future.In this study,based on chemical stabilization of warm and icerich frozen ground,the soil-cement column(SCC)for ground improvement was recommended to reinforce the foundations in warm and ice-rich permafrost regions.To explore the validity of countermeasures mentioned above,both the original foundation and the composite foundation consisting of SCC with soil temperature of-1.0℃were prepared in the laboratory,and then the plate loading tests were carried out.The laboratory investigations indicated that the bearing capacity of composite foundation consisting of SCC was higher than that of original foundation,and the total deformation of original foundation was greater than that of composite foundation,meaning that overall stability of foundation with warm and ice-rich frozen soil can be improved by SCC installation.Meanwhile,a numerical model considering the interface interaction between frozen soil and SCC was established for interpretating the bearing mechanism of composite foundation.The numerical investigations revealed that the SCC within composite foundation was responsible for the more applied load,and the applied load can be delivered to deeper zone in depth due to the SCC installation,which was favorable for improving the bearing characteristic of composite foundation.The investigations provide the valuable guideline for the choice of engineering supporting techniques to major projects within the QTEC.
基金supported by the National Key R&D Plan“Inter-governmental International Science&Technology Innovation Cooperation”Key Specialized Program,China(2025YFE0102800)the Program of the State Key Laboratory of Cryospheric Science and Frozen Soil Engineering,Chinese Academy of Sciences(CSFSE-ZZ-2403).
文摘Tajikistan contains the majority of Central Asia’s glaciers,which cover about 6.00%of the national territory;their rapid shrinkage poses a significant threat to regional water resource security.However,glacier monitoring in Tajikistan was interrupted after 1991,creating a substantial gap in understanding the current state and temporal evolution of these glaciers.Based on glacier inventory data,in situ measurements,and published literature,this study examined the present status and recent variations of glaciers in Tajikistan through data integration and validation,literature collation and comparative analysis,and the application of Geographic Information System(GIS)spatial analysis techniques.As of 2023,Tajikistan possesses a total of 11,528 glaciers,encompassing an area of 7624.48(±305.58)km2.Small glaciers dominate in number,whereas large glaciers account for the majority of the total area.Over the past two decades,the glacier count has decreased by 2014,and the total area has decreased by 628.98 km2,corresponding to an average annual reduction rate of 0.33%.Regional shrinkage rates range from 4.10%to 22.28%.Glaciers have undergone accelerated mass loss during the past 20 a;only those on the northeastern Pamir Plateau exhibit a weak positive mass balance.Observations of typical monitored glaciers also reveal intensified melting and retreat,consistent with regional trends.In light of the recent acceleration of glacier shrinkage in Tajikistan,focused measures should be implemented to strengthen glacier monitoring,enhance public awareness of glacier preservation,and promote the sustainable development and utilization of glacier tourism.These findings bridge the knowledge gap regarding the spatiotemporal dynamics of Tajikistan’s glaciers over recent decades and provide essential data support for regional water resource management.
基金supported by the Natural Science Foundation of China(No.41301070)the National Key Basic Research Program(973 Program) of China (No.2012CB026106)+2 种基金the West Light Program for Talent Cultivation of Chinese Academy of Sciences(toDr.ZHANG Ze)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China Ministry of Education(to Dr.ZHANG Ze)the Scientific and Technical Projects of the Transport Department of Gansu Province,China(No.2014-03)
文摘Studies conducted over several decades have shown that the freeze-thaw cycles are a process of energy input and output in soil, which help drive the formation of soil structure, through water expansion by crystallization and the movement of water and salts by thermal gradients. However, most of these studies are published in Russian or Chinese and are less accessible to international researchers. This review brought together a wide range of studies on the effects of freezing and thawing on soil structure. The following findings are summarized: i) soil structure after freeze-thaw cycles changes considerably and the changes are due to the mechanical fragmentation of soil coarse mineral particles and the aggregation of soil fine particles; ii) the particle size of soil becomes homogeneous and the variation in soil structure weakens as the number of freeze-thaw cycles increases; iii) in the freezing process of soil, an important principle in the variation of soil particle bonding is presented as: condensation →aggregation→ crystallization; iv) the freeze-thaw cycling process has a strong effect on soil structure by changing the granulometric composition of mineral particles and structures within the soil. The freeze-thaw cycling process strengthens particle bonding, which causes an overall increase in aggregate stability of soil, showing a process from destruction to reconstruction.
基金supported by the National Key Basic Research Program of China(973 Program)(Grant No.2012CB026106)National Natural Science Foundation of China(No.41672310)+3 种基金the Science and Technology Major Project of Gansu Province(Grant No.143GKDA007)National key research and development program(2016YFC0802103)the West Light Foundation of CAS for Dr.G.Y.Li,Project of the State Key Laboratory of Frozen Soils Engineering of CAS(Grant No.SKLFSE-ZY-16)the STS research project of the Cold and Arid Regions Environmental and Engineering Research Institute(HHS-TSS-STS-1502)
文摘Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. However, uneven subsidence, pavement cracks and other related damages can affect the integrity of loess subgrade after several years of operation,and even cause some hazards, especially in North China, where the strong freeze-thaw erosion occurs. In this study, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement,microstructure, and the related mechanisms were addressed. The experimental results showed that an obvious water migration and redistribution occurred within the samples during freeze-thaw cycles. Ice lenses and fissures could be identified in the upper frozen layers of the samples. After freeze-thaw cycles,the dry densities of the upper layers of samples changed significantly due to strong freeze-thaw erosion. The dry densities decreased for the dense sample and increased for the loose sample. It can be found that dense samples become loose, while loose samples became dense with the increasing number of freeze-thaw cycles. Their related void ratios changed reversely. Both void ratios tended to fall into a certain range, which verified the concept of a residual void ratio proposed by Viklander. The loosening process of densely compacted samples involves the formation of large pores, volume increase and density reduction as well as the related changes in mechanical properties because freeze-thaw cycles may be important contribution to problems of loess road embankments.Adverse effects of freeze-thaw cycles, therefore,should be taken into account in selecting loess parameters for the stability evaluation of road embankment in seasonally frozen ground regions.
基金funded by the National Natural Science Foundation of China(Grant No.41401611,41301072)China Postdoctoral Science Foundation(Grant No.2014M560817,2015T81069)the Open Project Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE201208)
文摘Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.
基金Foundation item:Under the auspices of Shahrood University of Technology,Iran(No.348517)
文摘Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.
基金supported by the National Natural Science Foundation of China(Grant No.41501079 and 91647103)Funded by State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-43)+1 种基金the Chinese Academy of Sciences(CAS)Key Research Program(Grant No.KZZD-EW-13)the Foundation for Excellent Youth Scholars of NIEER,CAS
文摘The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.
基金supported by the National Natural Science Foundation of China (No.11172251)the Open Fund of State Key Laboratory of Frozen Soil Engineering (No.SKLFSE201001)the Fundamental Research Funds for the Central Universities (No.SWJTU09CX069)
文摘The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at the temperatures of -3 ℃, -8 ℃, -13℃, -17℃, -23℃, and -28℃ and with the strain rates from 900 s^-1 to 1500 s^-1. The nearly uniaxial stress-strain curves exhibit an elastic-plastic behavior, whereas the uniaxial stress-strain curves show a brittle behavior. The compressive strength of the frozen soil exhibits the positive strain rate and negative temperature sensitivity, and the final strain of the frozen soil shows the positive strain under the nearly uniaxial strain is greater rate sensitivity. The strength of the frozen soil than that under the uniaxial stress. After the negative confinement tests, the specimens are compressed, and the visible cracks are not observed. However, the specimens are catastrophically damaged after the uniaxial SHPB tests. A phenomenological model with the thermal sensitivity is established to describe the dynamic behavior of the confined frozen soil.
基金supported by the National Key Basic Research Program of China (973 Program) (No.2012CB026106)the National Natural Science Foundation of China (Grant No. 41171059)the Fund of the State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZY-16)
文摘In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃.
基金This work was supported by the National Natural Science Foundation of China(Grants 11672253 and 11972028)the Opening Foundation of the State Key Laboratory of Frozen Soil Engineering(Grant SKLFSE201918)and the Opening Foundation of the State Key Laboratory for Strength and Vibration of Mechanical Structures(Grant SV2019-KF-19).
文摘With the development of cold region engineering,it is crucial to study the mechanical properties of frozen soil.In practice,frozen soil is inevitably subject to impact loading,making the study of frozen soil under impact loading necessary for engineering in cold regions.The split–Hopkinson pressure bar(SHPB)is an important experimental means for obtaining the dynamic performance of materials.In this study,an SHPB experiment was conducted on frozen soil under confining pressure.The frozen soil exhibited an evident strain rate effect and temperature effect under confining pressure.The SHPB experiment on frozen soil under confining pressure was simulated numerically using LS-DYNA software and the Holmquist–Johnson–Cook(HJC)material model.A loading simulation with passive confining pressure and active confining pressure was completed by adding an aluminum sleeve and applying a constant load.The simulation results obtained using the above methods were in good agreement with the experimental results.The strength of the frozen soil under confining pressure was greater than that of the uniaxial impact,and there was an evident confining pressure effect.Furthermore,the confining pressure provided by passive confinement was larger than that provided by active confinement.The passive confining pressure energy absorption efficiency was higher than for the active confining pressure due to the need to absorb more energy under the same damage conditions.The frozen soil exhibited viscoplastic failure characteristics under confining pressure.
基金Project supported by the National Natural Science Foundation of China(No.11172251)the Open Fund of State Key Laboratory of Frozen Soil Engineering(No.SKLFSE201001)+1 种基金the Opening Project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,No.KFJJ13-10M)the Project of Sichuan Provincial Youth Science and Technology Innovation Team,China(No.2013TD0004)
文摘By taking the frozen soil as a particle-reinforced composite material which consists of clay soil (i.e., the matrix) and ice particles, a micromechanical constitutive model is established to describe the dynamic compressive deformation of frozen soil. The proposed model is constructed by referring to the debonding damage theory of composite materials, and addresses the effects of strain rate and temperature on the dynamic compressive deformation of frozen soil. The proposed model is verified through comparison of the predictions with the corresponding dynamic experimental data of frozen soil obtained from the split Hopkinson pressure bar (SHPB) tests at different high strain rates and temperatures. It is shown that the predictions agree well with the experimental results.