Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ...Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.展开更多
The relationship between the neighborhood environment and well-being is attracting increasingly attention from researchers and policymakers,as the goal of development has shift from economy to well-being.However,exist...The relationship between the neighborhood environment and well-being is attracting increasingly attention from researchers and policymakers,as the goal of development has shift from economy to well-being.However,existing literature predominantly adopts the utilitarian approach,understanding well-being as people’s feelings about their lives and viewing the neighborhood environment as resources that benefit well-being.The Capability Approach,a novel approach that conceptualize well-being as the freedoms to do or to be and regard environment as conversion factors that influence well-being,can offer new lens by incorporating human development in-to these topics.This paper proposes an alternative theoretical framework:well-being is conceptualized and measured by capability;neighborhood environment affects well-being by providing spatial services,functioning as environmental conversion factors,and serving as social conversion factors.We conducted a case study of Changshu City located in eastern China,utilizing multiple resource data,applying explainable artificial intelligence(XAI),namely eXtreme Gradient Boosting(XGBoost)and SHapley Additive exPlana-tions(SHAP).Our findings highlight the significance of viewing the neighborhood environment as a set of conversion factors,as it provides more explanatory power than providing spatial services.Compared to conventional research based on linear relationship as-sumption,our results demonstrate that the effects of neighborhood environment on well-being are non-linear,characterized by threshold effects and interaction effects.These insights are crucial for informing urban planning and public policy.This research enriches our un-derstanding of well-being,neighborhood environment,and their relationship as well as provides empirical evidence for the core concept of conversion factors in the capability approach.展开更多
基金financial support provided by the Natural Science Foundation of Hebei Province,China(No.E2024105036)the Tangshan Talent Funding Project,China(Nos.B202302007 and A2021110015)+1 种基金the National Natural Science Foundation of China(No.52264042)the Australian Research Council(No.IH230100010)。
文摘Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.
基金Under the auspices of National Natural Science Foundation of China(No.42271230,42330510)。
文摘The relationship between the neighborhood environment and well-being is attracting increasingly attention from researchers and policymakers,as the goal of development has shift from economy to well-being.However,existing literature predominantly adopts the utilitarian approach,understanding well-being as people’s feelings about their lives and viewing the neighborhood environment as resources that benefit well-being.The Capability Approach,a novel approach that conceptualize well-being as the freedoms to do or to be and regard environment as conversion factors that influence well-being,can offer new lens by incorporating human development in-to these topics.This paper proposes an alternative theoretical framework:well-being is conceptualized and measured by capability;neighborhood environment affects well-being by providing spatial services,functioning as environmental conversion factors,and serving as social conversion factors.We conducted a case study of Changshu City located in eastern China,utilizing multiple resource data,applying explainable artificial intelligence(XAI),namely eXtreme Gradient Boosting(XGBoost)and SHapley Additive exPlana-tions(SHAP).Our findings highlight the significance of viewing the neighborhood environment as a set of conversion factors,as it provides more explanatory power than providing spatial services.Compared to conventional research based on linear relationship as-sumption,our results demonstrate that the effects of neighborhood environment on well-being are non-linear,characterized by threshold effects and interaction effects.These insights are crucial for informing urban planning and public policy.This research enriches our un-derstanding of well-being,neighborhood environment,and their relationship as well as provides empirical evidence for the core concept of conversion factors in the capability approach.