This paper describes an underwater 3500 m electric manipulator (named Huahai-4E, stands for four functions deep ocean electric manipulator in China), which has been developed at underwater manipulation technology la...This paper describes an underwater 3500 m electric manipulator (named Huahai-4E, stands for four functions deep ocean electric manipulator in China), which has been developed at underwater manipulation technology lab in Huazhong University of Science and Technology (HUST) for a test bed of studying of deep ocean manipulation technologies. The manipulator features modular integration joints, and layered architecture control system. The oil-filled, pressure-compensated joint is compactly designed and integrated of a permanent magnet (PM) brushless motor, a drive circuit, a harmonic gear and an angular feedback potentiometer. The underwater control system is based on a network and consisted of three embedded PC/104 computers which are used for servo control, task plan and target sensor respectively. They communicate through User Datagram Protocol (UDP) multicast communication in Vxworks OS. A supervisor PC with a virtual 3D GUI is fiber linked to underwater control system. Furthermore, the manipulator is equipped with a sensor system including a unique ultra-sonic probe array and an underwater camera. Autonomous grasp strategy based multi-sensor is studied. The results of watertight test in 40 MPa, joint's efficiency test and autonomous grasp experiments in tank are also presented.展开更多
This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensio...This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.展开更多
A doublet integral equation is formulated for the two-dimensional dissipative potential flow around a hydrofoil submerged below a free-water surface. The free-water surface is assumed to involve energy dissipation, an...A doublet integral equation is formulated for the two-dimensional dissipative potential flow around a hydrofoil submerged below a free-water surface. The free-water surface is assumed to involve energy dissipation, and thus it is the source of damping. A doublet panel method is developed from incorporation of the dissipative Green function approach and the doublet distributions on the hydrofoil surface. Numerical computations are implemented, and the derived numerical results are in good agreement with analytic solutions and experimental measurements.展开更多
New concepts of reducible independent cutset and reducible independent loop are developedthrough an analysis of the ladder network.A new analytic method,named structural analysis method,is pres-entod.It evaluates the ...New concepts of reducible independent cutset and reducible independent loop are developedthrough an analysis of the ladder network.A new analytic method,named structural analysis method,is pres-entod.It evaluates the controllability and observability of a network based on its structure rather than onits state equation.Some problems in the conventional network analysis can be solved using this method.Re-sults obtained by this method are in good agreement with those obtained by that of state space analysis,butthis method is much simpler in use.A practical example is given.展开更多
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or...A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-LagrangianEulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.展开更多
In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and l...In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.展开更多
A new simple method in which arbitrary transfer function matrix is realized withactive multiple port network instead of computer simulating is proposed. The active multipleport network is carried on through state feed...A new simple method in which arbitrary transfer function matrix is realized withactive multiple port network instead of computer simulating is proposed. The active multipleport network is carried on through state feedback and state cross output for RC ladder network.The main process is to determine coefficients of each adder. Finally, an example is given forillustration.展开更多
Reliable analyses and rational descriptions of loadings, motions and structural distortions of a slender ship in rough seas has continuously become one of key techniques for ensuring the performance and safety of the ...Reliable analyses and rational descriptions of loadings, motions and structural distortions of a slender ship in rough seas has continuously become one of key techniques for ensuring the performance and safety of the ship. In investigating this problems, the naval architects have to deal with a coupled dynamic system caused by the interaction between slender ship structure and surrounding fluid. In this paper the aim is to provide further understanding about the dynamics of this coupled entirety from the point of view of hydroelasticity.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No. 2006AA09Z203)State Commission of Science and Technology for National Defense Industry Project "micro underwater work tool"the National Natural Science Foundation of China(Grant Nos.50909046 and 51079061)
文摘This paper describes an underwater 3500 m electric manipulator (named Huahai-4E, stands for four functions deep ocean electric manipulator in China), which has been developed at underwater manipulation technology lab in Huazhong University of Science and Technology (HUST) for a test bed of studying of deep ocean manipulation technologies. The manipulator features modular integration joints, and layered architecture control system. The oil-filled, pressure-compensated joint is compactly designed and integrated of a permanent magnet (PM) brushless motor, a drive circuit, a harmonic gear and an angular feedback potentiometer. The underwater control system is based on a network and consisted of three embedded PC/104 computers which are used for servo control, task plan and target sensor respectively. They communicate through User Datagram Protocol (UDP) multicast communication in Vxworks OS. A supervisor PC with a virtual 3D GUI is fiber linked to underwater control system. Furthermore, the manipulator is equipped with a sensor system including a unique ultra-sonic probe array and an underwater camera. Autonomous grasp strategy based multi-sensor is studied. The results of watertight test in 40 MPa, joint's efficiency test and autonomous grasp experiments in tank are also presented.
文摘This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.
文摘A doublet integral equation is formulated for the two-dimensional dissipative potential flow around a hydrofoil submerged below a free-water surface. The free-water surface is assumed to involve energy dissipation, and thus it is the source of damping. A doublet panel method is developed from incorporation of the dissipative Green function approach and the doublet distributions on the hydrofoil surface. Numerical computations are implemented, and the derived numerical results are in good agreement with analytic solutions and experimental measurements.
文摘New concepts of reducible independent cutset and reducible independent loop are developedthrough an analysis of the ladder network.A new analytic method,named structural analysis method,is pres-entod.It evaluates the controllability and observability of a network based on its structure rather than onits state equation.Some problems in the conventional network analysis can be solved using this method.Re-sults obtained by this method are in good agreement with those obtained by that of state space analysis,butthis method is much simpler in use.A practical example is given.
文摘A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-LagrangianEulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
基金Project supported by the National Natural Science Foundation of China(No.11571240)the Shenzhen Natural Science Fund of China(the Stable Support Plan Program No.20220805175116001)。
文摘In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.
文摘A new simple method in which arbitrary transfer function matrix is realized withactive multiple port network instead of computer simulating is proposed. The active multipleport network is carried on through state feedback and state cross output for RC ladder network.The main process is to determine coefficients of each adder. Finally, an example is given forillustration.
文摘Reliable analyses and rational descriptions of loadings, motions and structural distortions of a slender ship in rough seas has continuously become one of key techniques for ensuring the performance and safety of the ship. In investigating this problems, the naval architects have to deal with a coupled dynamic system caused by the interaction between slender ship structure and surrounding fluid. In this paper the aim is to provide further understanding about the dynamics of this coupled entirety from the point of view of hydroelasticity.