The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
The </span><span style="font-family:""><span style="font-family:Verdana;">development of photovoltaics (PV)-powered vehicles are expected to contribute to reduce CO</span&...The </span><span style="font-family:""><span style="font-family:Verdana;">development of photovoltaics (PV)-powered vehicles are expected to contribute to reduce CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission of vehicles and create </span></span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">clean energy society. This paper presents </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">impact of high-efficiency solar cell modules on reduction in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission, charging cost reduction for electric vehicles</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and reducing storage capacity of PV-powered electric vehicles. In this paper, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">effects of solar cell module efficiency upon driving distance of PV-powered vehicles are also shown. Especially, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">potential of Si tandem solar cells for PV-powered vehicle application</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is discussed. This paper presents that the III-V/Si 3-junction solar cell modules with an efficiency of more than 37% have </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">potential of longer driving distance of 30 km/day average and more than 50 km/day on a clear day compared to </span><span style="font-family:Verdana;">an </span><span style="font-family:Verdana;">average 16 km/day driving by vehicles powered by 20% efficiency Si solar cell modules.展开更多
Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure b...Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure based on PV. Especially, development of solar-powered vehicles as a new application is highly desired and very important for this end. This paper presents the impact of PV cell/module conversion efficiency on reduction in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission and increase in driving range of the electric based vehicles. Our studies show that the utilization of a highly-efficient (higher than 30%) PV module enables the solar-powered vehicle to drive 30 km/day without charging in the case of light weig</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t cars with elec</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ric mileage of 17</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">km/kWh under solar irrad</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">i</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ion of 3.7</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">kWh/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/day, which means that the majority of the family cars in Japan can run only by the sunlight without supplying fossil fuels. Thus, it is essential to develop high-efficiency as well as low-cost solar cells and modules for automotive applications. The analytical results developed by the authors for conversion efficiency potential of various solar cells for choosing candidates of the PV modules for automotive applications are shown. Then we overview the conversion efficiency potential and recent progress of various Si tandem solar cells, such as III-V/Si, II-VI/Si, chalcopyrite/Si, and perovskite/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of its high conversion efficiency of larger than 36% for dual-junction and 42% for triple-junction solar cells under 1-sun AM1.5 G illumination, lightweight and low-cost potentials. The analysis show</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> that III-V based multi-junction and Si based tandem solar cells are considered to be promising candidates for the automotive application. Finally, we report recent results for our 28.2% efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si triple-junction solar cell. In addition, new approaches which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> suitable for automotive applications by using III-V triple-junction, and static low concentrator PV modules are also presented.展开更多
The Si tandem solar cells are very attractive for realizing high efficiency and low cost. This paper overviews current status of III-V/Si tandem solar cells including our results. The analytical results for efficiency...The Si tandem solar cells are very attractive for realizing high efficiency and low cost. This paper overviews current status of III-V/Si tandem solar cells including our results. The analytical results for efficiency potential of Si tandem solar cells and loss analysis of Si bottom cells as well as bandgap energy optimization of sub-cells are presented. The 2-junction and 3-junction Si tandem solar cells have potential efficiencies of 36% and 42%, respectively. ERE (external radiative efficiency) analysis for Si solar cells is analyzed in or</span><span style="font-family:Verdana;">der to clarify properties of Si bottom solar cells. Properties of single-crystalline Si heterojunction solar cell</span><span style="font-family:Verdana;"> fabricated in this study were analyzed. The current </span><span><span style="font-family:Verdana;">status of efficiencies of our Si bottom cell, upper III-V 2-junction solar cell and III-V/Si 3-junction tandem solar cell was shown to be 5.2% and 28.6% and 33.8%. Achievement of </span><span style="white-space:nowrap;font-family:Verdana;"><i></span><span style="font-family:Verdana;"></span><i><span style="font-family:Verdana;">J</span><sub><span style="font-family:Verdana;">sc</span><span style="white-space:nowrap;font-family:Verdana;"></i></span><span style="font-family:Verdana;"></span></sub></i><span style="font-family:Verdana;"> of 12 mA/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> for Si bottom cell is necessary to realize high-efficiency 3-junction Si tandem solar cells with an efficiency of</span></span><span style="font-family:Verdana;"> more than 37%. In addition, this paper presents ERE analysis of III-V 2-junction upper solar cells for improving III-V/Si 3-junction tandem solar cells. Several ways to improve efficiency of III-V/Si 3-junction tandem solar cells by reducing non-radiative recombination, optical and resistance losses are shown.展开更多
We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of AI and Au in-plane whose boundar...We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of AI and Au in-plane whose boundary is smooth enough with proper etching time. SPPs excited on the AI film travel to the boundary and a portion of SPPs propagates into the Au film. In addition, interference fringes appear in the SNOM image bent at the boundary. The result is analysed with effective index method and the refracted angle is explained by Shell's law.展开更多
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘The </span><span style="font-family:""><span style="font-family:Verdana;">development of photovoltaics (PV)-powered vehicles are expected to contribute to reduce CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission of vehicles and create </span></span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">clean energy society. This paper presents </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">impact of high-efficiency solar cell modules on reduction in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission, charging cost reduction for electric vehicles</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and reducing storage capacity of PV-powered electric vehicles. In this paper, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">effects of solar cell module efficiency upon driving distance of PV-powered vehicles are also shown. Especially, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">potential of Si tandem solar cells for PV-powered vehicle application</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is discussed. This paper presents that the III-V/Si 3-junction solar cell modules with an efficiency of more than 37% have </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">potential of longer driving distance of 30 km/day average and more than 50 km/day on a clear day compared to </span><span style="font-family:Verdana;">an </span><span style="font-family:Verdana;">average 16 km/day driving by vehicles powered by 20% efficiency Si solar cell modules.
文摘Development of highly-efficient photovoltaic (PV) modules and expanding its application fields are significant for the further development of PV technologies and realization of innovative green energy infrastructure based on PV. Especially, development of solar-powered vehicles as a new application is highly desired and very important for this end. This paper presents the impact of PV cell/module conversion efficiency on reduction in CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> emission and increase in driving range of the electric based vehicles. Our studies show that the utilization of a highly-efficient (higher than 30%) PV module enables the solar-powered vehicle to drive 30 km/day without charging in the case of light weig</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">h</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t cars with elec</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ric mileage of 17</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">km/kWh under solar irrad</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">i</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ion of 3.7</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">kWh/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/day, which means that the majority of the family cars in Japan can run only by the sunlight without supplying fossil fuels. Thus, it is essential to develop high-efficiency as well as low-cost solar cells and modules for automotive applications. The analytical results developed by the authors for conversion efficiency potential of various solar cells for choosing candidates of the PV modules for automotive applications are shown. Then we overview the conversion efficiency potential and recent progress of various Si tandem solar cells, such as III-V/Si, II-VI/Si, chalcopyrite/Si, and perovskite/Si tandem solar cells. The III-V/Si tandem solar cells are expected to have a high potential for various applications because of its high conversion efficiency of larger than 36% for dual-junction and 42% for triple-junction solar cells under 1-sun AM1.5 G illumination, lightweight and low-cost potentials. The analysis show</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> that III-V based multi-junction and Si based tandem solar cells are considered to be promising candidates for the automotive application. Finally, we report recent results for our 28.2% efficiency and Sharp’s 33% mechanically stacked InGaP/GaAs/Si triple-junction solar cell. In addition, new approaches which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> suitable for automotive applications by using III-V triple-junction, and static low concentrator PV modules are also presented.
文摘The Si tandem solar cells are very attractive for realizing high efficiency and low cost. This paper overviews current status of III-V/Si tandem solar cells including our results. The analytical results for efficiency potential of Si tandem solar cells and loss analysis of Si bottom cells as well as bandgap energy optimization of sub-cells are presented. The 2-junction and 3-junction Si tandem solar cells have potential efficiencies of 36% and 42%, respectively. ERE (external radiative efficiency) analysis for Si solar cells is analyzed in or</span><span style="font-family:Verdana;">der to clarify properties of Si bottom solar cells. Properties of single-crystalline Si heterojunction solar cell</span><span style="font-family:Verdana;"> fabricated in this study were analyzed. The current </span><span><span style="font-family:Verdana;">status of efficiencies of our Si bottom cell, upper III-V 2-junction solar cell and III-V/Si 3-junction tandem solar cell was shown to be 5.2% and 28.6% and 33.8%. Achievement of </span><span style="white-space:nowrap;font-family:Verdana;"><i></span><span style="font-family:Verdana;"></span><i><span style="font-family:Verdana;">J</span><sub><span style="font-family:Verdana;">sc</span><span style="white-space:nowrap;font-family:Verdana;"></i></span><span style="font-family:Verdana;"></span></sub></i><span style="font-family:Verdana;"> of 12 mA/cm</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> for Si bottom cell is necessary to realize high-efficiency 3-junction Si tandem solar cells with an efficiency of</span></span><span style="font-family:Verdana;"> more than 37%. In addition, this paper presents ERE analysis of III-V 2-junction upper solar cells for improving III-V/Si 3-junction tandem solar cells. Several ways to improve efficiency of III-V/Si 3-junction tandem solar cells by reducing non-radiative recombination, optical and resistance losses are shown.
文摘We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of AI and Au in-plane whose boundary is smooth enough with proper etching time. SPPs excited on the AI film travel to the boundary and a portion of SPPs propagates into the Au film. In addition, interference fringes appear in the SNOM image bent at the boundary. The result is analysed with effective index method and the refracted angle is explained by Shell's law.