期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Oiliness gradation of hybrid sedimentary shale with low‑moderate organic matter content:a case study of the Paleocene Shahejie Formation in Dongpu Depression,Bohai Bay Basin
1
作者 Zhiming Xiong Tao Hu +11 位作者 Yuqi Wu Yunlong Xu Jiyou Fu Huiyi Xiao Yuan Liu Kuo Zhou Qinglong Lei Tianshun Chen Xiaofei Lin Mingxing Liu Shu Jiang Maowen Li 《International Journal of Coal Science & Technology》 2025年第5期199-217,共19页
Shale oil resources are abundant on Earth,of which hybrid sedimentary shale(HSS)oil is an important component,including high and medium-low organic matter content(TOC).Oil content,especially the oiliness gradation,is ... Shale oil resources are abundant on Earth,of which hybrid sedimentary shale(HSS)oil is an important component,including high and medium-low organic matter content(TOC).Oil content,especially the oiliness gradation,is a key parameter for shale oil evaluation and numerous studies had been conducted.However,most studies concentrated on the HSS with high TOC,making oil content evaluation of the HSS with medium-low TOC challenging.The Paleocene Shahejie Formation(E2s)shale in Dongpu Depression is a typical HSS with low-moderate TOC,showing great shale oil resource potential.Integrated geochemical characterization of 270 core samples were conducted and results show that,the E2s shale has fairgood hydrocarbon generation potential,with TOC ranging from 0.06%to 3.6%(Avg.0.86%)andⅡ1-Ⅱ2 kerogen type in thermally mature.The hydrocarbon generation potential decreases with kerogen types changing from type I toⅢ,but S1C and the oil saturation index(OSI)(S1*100/TOC>100)increase from type I toⅡ1,and then decrease from typeⅡ2 toⅢ,indicating shale with typeⅡ2 kerogen have the greatest oil content.This is related to the diferences in hydrocarbon expulsion efciency caused by diferential hydrocarbon generation potential and pore-microfractures evolution among shales with diferent kerogen types.Signifcant oil micro-migration occurred in E2s shale,with micro-migration quantity(∆Q)ranging from-846 to 993 mg/g(Avg.-120 mg/g),and 90%and 10%shale exhibit hydrocarbon intra-micro-migration(∆Q<0)and extra-micro-migration(∆Q>0).The shale with typeⅡ2 kerogen has the greatest intra-micro-migration.Based on S1C,TOC and OSI values and their evolution pattern,shale oil resources were classifed into enriched,moderately enriched,less efcient and invalid resources,accounting for 11%,53%,16%and 21%respectively,with S1C thresholds of 3.5 and 0.5 mg/g,OSI threshold of 100 mg/g.Compared with previous grading criteria,the gradation criterion established in this study is relatively lower,which is mainly due to the lower TOC and clay mineral content in HSS.Enriched and moderately enriched resources are mainly shales with typeⅡ2 kerogen,followed by typeⅡ1 kerogen,and the E2s4 U and E2s3 L shale are the most favorable targets for further shale oil exploration.The established oiliness gradation criteria are applicable for the HSS with TOC in other parts of the world. 展开更多
关键词 Hybrid sedimentary shale Shale oil Oilness Low-moderate organic matter content Micro-migration Grading evaluation criteria
在线阅读 下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:3
2
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部