Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national ec...Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national economy and the people's livelihood,such as national defense security and the development of new quality productive forces.This paper provides a comprehensive survey of how sensors should adapt to the current upsurge of artificial intelligence,analyzing their technical connotations,application characteristics,and inherent limitations.Furthermore,with a sensor-oriented mindset,it is proposed that sensors will dominate information technology,upgrade connotations,advance ubiquitous bionic intelligence and engage in a"symbiotic dance"with artificial intelligence.This overview provides a promising direction for the higher-level development of sensors and artificial intelligence.展开更多
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc...The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.展开更多
Stretchable strain sensors are a crucial component in various applications,such as wearable devices,human-machine interfaces,and soft robotics.Hence,strain sensors with low hysteresis,high fidelity,and accurate sensin...Stretchable strain sensors are a crucial component in various applications,such as wearable devices,human-machine interfaces,and soft robotics.Hence,strain sensors with low hysteresis,high fidelity,and accurate sensing ability are urgently required for the precise measurement of large and high-frequency dynamic deformations.However,the existing hysteresis of the current functional materials utilized in strain sensors significantly impedes the achievement of these properties.Herein,we introduce an ultralow dynamic hysteresis capacitive strain sensor using a low-hysteresis and high-relative-permittivity ionic liquid-elastomer composite as the dielectric material.Based on the low-hysteresis dielectric,the prepared capacitive strain sensors exhibit ultralow electrical hysteresis(2.20%at a strain rate of 100% s^(-1)and strain of100%)and maintain low electrical hysteresis(4.35%)even under extremely high strain rates and large dynamic strain loads(a strain rate of 500% s^(-1)and strain of 100%).Moreover,the strain sensor manifests exceptional cyclic stability under 50,000 cycles of 100%strain at a strain rate of 200% s^(-1);the response curves remain nearly identical throughout these 50,000 cycles.Furthermore,the ultralowhysteresis strain sensor was successfully applied to accurate and reliable real-time human-machine interactions,revealing its great potential in various fields,including electronic skin,flexible robotics,wearable electronics,and virtual reality.展开更多
Figure 6(a)in the paper[Chin.Phys.B 33074203(2024)]was incorrect due to editorial oversight.The correct figure is provided.This modification does not affect the result presented in the paper.
Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widel...Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases.The presented review article is focusing on the recent developments of NO2gas sensors based on ZnO nanomaterials.The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms.Basic gas sensing characteristics such as gas response,response time,recovery time,selectivity,detection limit,stability and recyclability,etc are also discussed in this article.Further,the utilization of various ZnO nanomaterials such as nanorods,nanowires,nano-micro flowers,quantum dots,thin films and nanosheets,etc for the fabrication of NO2gas sensors are also presented.Moreover,various factors such as NO2concentrations,annealing temperature,ZnO morphologies and particle sizes,relative humidity,operating temperatures which are affecting the NO2gas sensing properties are discussed in this review.Finally,the review article is concluded and future directions are presented.展开更多
Dopamine,a pivotal excitatory neurotransmitter,plays a crucial role in metabolic,cardiovascular,renal,central nervous,and endocrine systems.Abnormal dopamine within the human body can cause various diseases.Therefore,...Dopamine,a pivotal excitatory neurotransmitter,plays a crucial role in metabolic,cardiovascular,renal,central nervous,and endocrine systems.Abnormal dopamine within the human body can cause various diseases.Therefore,the precise quantification of dopamine levels,both in vivo and in vitro,holds paramount significance for clinical applications and physiological investigations.Carbon dots(CDs)exhibit a plethora of remarkable properties,including a substantial specific surface area,robust electrical conductivity,commendable biocompatibility,minimal toxicity,and high photostability.Considering these unique characteristics,CDs demonstrate substantial potential for fluorescent sensors,colorimetric sensors,and electrochemical sensors for dopamine detection.This review systematically examined the challenges and prospects for the utilization of CDs-based fluorescent sensors,electrochemical biosensors,and colorimetric sensors for monitoring dopamine levels in recent years.These findings unveil promising avenues for further advancements in the field of dopamine detection.展开更多
As a laser passes through a scattering medium,the light interacts with the irregular reflections within the medium,resulting in light scattering and the formation of speckles.In this paper,an image sensor based on the...As a laser passes through a scattering medium,the light interacts with the irregular reflections within the medium,resulting in light scattering and the formation of speckles.In this paper,an image sensor based on the combination of a coreless optical fiber and a digital camera is proposed for liquid refractive index sensing applications.The coreless fiber is used as a sensing unit,and the change in the speckle pattern is measured using the digital correlation method to detect the magnitude of the liquid's refractive index.The experimental results indicate that the laser image sensing technique is capable of effectively distinguishing liquid samples with refractive indices ranging from 1.332 8 to1.390 8,with a sensing sensitivity of-1.306 RIU-l.Moreover,the laser image sensing technique,with its advantages of high experimental reproducibility,simple system design,remote over-control,holds great research significance and potential application in laser communication and sensor integration.展开更多
The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected t...The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected to Faraday rotation are used as a replacement for electromagnetic transducers due to their immunity to electromagnetic interference. However, the principal parameter in this system, the sensitivity to magnetic fields or current, depends on the Verdet constant, which is low in the case of optical fibers. However, the optical path length can be increased to compensate for it by winding the fiber around a current carrying element a large number of turns. In this work, we study a current sensor, which is made up of a conductor coil with a fiber inside, thus increasing sensitivity. We study the effect of the inhomogeneity of the magnetic field induced by the current on the sensitivity of the optical fiber sensor.展开更多
A fiber twist sensor using a Sagnac interferometer incorporating a tapered polarization-maintaining fiber(PMF)is proposed.The transmission properties of the sensor are investigated both theoretically and experimentall...A fiber twist sensor using a Sagnac interferometer incorporating a tapered polarization-maintaining fiber(PMF)is proposed.The transmission properties of the sensor are investigated both theoretically and experimentally.Given the optoelastic effect,which depends on fiber geometry,the modal and group birefringences of the PMF can be controlled by applying different twist angles.The spectral wavelength shifts,free spectral ranges,and transmission losses of the original,microtapered,and etched PMFs were compared.Notably,the interference dips for the etched PMF move in opposite directions.As a result,the proposed PMF-based sensor could have multiparameter sensing applications.展开更多
Based on the analysis of one-dimension inertial accelerometer movement model,from which the resolution of the accelerometer inertial mass displacement equation was derived,the response of the sensor sensing element to...Based on the analysis of one-dimension inertial accelerometer movement model,from which the resolution of the accelerometer inertial mass displacement equation was derived,the response of the sensor sensing element to vibration and impact of various frequencies was studied.The theoretical and experimental results show that a reasonable configuration among the sensing element inherent frequency,environmental exciting frequency and the damp factors of the sensor is the key to prevent the sensor from damage.The sensor has good anti-vibrating impact ability when the relative damp factor is 0.7,and the environmental interferential vibrating frequency is less than 0.35 times of the inherent frequency of the sensing element.展开更多
As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protoco...As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protocols mainly focus on improving the efficiency of data transmitting and aggregating,alternately,the aim at enhancing the security of data.The performances of the secure data aggregation protocols are the trade-off of several metrics,which involves the transmission/fusion,the energy efficiency and the security in Wireless Sensor Network(WSN).Unfortunately,there is no paper in systematic analysis about the performance of the secure data aggregation protocols whether in IWSN or in WSN.In consideration of IWSN,we firstly review the security requirements and techniques in WSN data aggregation in this paper.Then,we give a holistic overview of the classical secure data aggregation protocols,which are divided into three categories:hop-by-hop encrypted data aggregation,end-to-end encrypted data aggregation and unencrypted secure data aggregation.Along this way,combining with the characteristics of industrial applications,we analyze the pros and cons of the existing security schemes in each category qualitatively,and realize that the security and the energy efficiency are suitable for IWSN.Finally,we make the conclusion about the techniques and approach in these categories,and highlight the future research directions of privacy preserving data aggregation in IWSN.展开更多
To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("...To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.展开更多
Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice techn...Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice technology, this paper proposes the data private protection algorithm with redundancy mechanism, which ensures privacy by privacy homomorphism mechanism and guarantees redundancy by carrying hidden data. Moreover,it selects the routing tree generated by CTP(Collection Tree Protocol) as routing path for data transmission. By dividing at the source node, it adds the hidden information and also the privacy homomorphism. At the same time,the information feedback tree is established between the destination node and the source node. In addition, the destination node immediately sends the packet loss information and the encryption key via the information feedback tree to the source node. As a result,it improves the reliability and privacy of data transmission and ensures the data redundancy.展开更多
A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is u...A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from-40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.展开更多
Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences ...Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.展开更多
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo...Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.展开更多
The three-dimensional hierarchical CuO and Au nanoparticles were synthesized by the hydrothermal method, respectively. The hierarchical CuO and the Au nanoparticles samples were characterized by X-ray diffraction and ...The three-dimensional hierarchical CuO and Au nanoparticles were synthesized by the hydrothermal method, respectively. The hierarchical CuO and the Au nanoparticles samples were characterized by X-ray diffraction and scanning electronic microscope, respectively. The as-synthesized CuO was assembled regularly from the nanosheets with thickness of 100 nm. The size of Au nanoparticles ranged from 50 to 200 nm. The hierarchical CuO gas sensors modified by different concentration of gold were fabricated. All the Au-loaded CuO gas sensors enhanced the response to ethanol and xylene while reducing the response to methanol, acetone, and formaldehyde. The results indicate that the Au nanoparticles prepared with PVP as surfactant can improve the selectivity of CuO gas sensors to ethanol gas for other common organic volatile gases. The improvement of gas sensing is mainly attributed to the different catalytic efficiency of the Au nanoparticles for different reactions. Meanwhile, the related mechanisms are discussed.展开更多
Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into ...Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.展开更多
Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The s...Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film.展开更多
A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordinati...A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.展开更多
基金funded by National Natural Science Foundation of China(52175492)Pilot Project for the Establishment of Virtual Teaching and Research Offices in Beijing's Higher Education Institutions(Grant No.4313054 and 4313055)Beijing Undergraduate Teaching Reform and Innovation Project of Higher Education(Grant No.ZF211B2002 and ZF211B2405).
文摘Sensors are the source of information technology and the first unit of intelligent systems,providing real-world"data"for artificial intelligence.They play a crucial role in various aspects of the national economy and the people's livelihood,such as national defense security and the development of new quality productive forces.This paper provides a comprehensive survey of how sensors should adapt to the current upsurge of artificial intelligence,analyzing their technical connotations,application characteristics,and inherent limitations.Furthermore,with a sensor-oriented mindset,it is proposed that sensors will dominate information technology,upgrade connotations,advance ubiquitous bionic intelligence and engage in a"symbiotic dance"with artificial intelligence.This overview provides a promising direction for the higher-level development of sensors and artificial intelligence.
基金the National Research Foundation(NRF)Singapore mid-sized center grant(NRF-MSG-2023-0002)FrontierCRP grant(NRF-F-CRP-2024-0006)+2 种基金A*STAR Singapore MTC RIE2025 project(M24W1NS005)IAF-PP project(M23M5a0069)Ministry of Education(MOE)Singapore Tier 2 project(MOE-T2EP50220-0014).
文摘The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment.
基金financially supported by the National Natural Science Foundation of China(Nos.52250398,52125205 and U20A20166)the Natural Science Foundation of Beijing Municipality(No.2222088)+1 种基金Shenzhen Science and Technology Program(No.KQTD20170810105439418)the Fundamental Research Funds for the Central Universities
文摘Stretchable strain sensors are a crucial component in various applications,such as wearable devices,human-machine interfaces,and soft robotics.Hence,strain sensors with low hysteresis,high fidelity,and accurate sensing ability are urgently required for the precise measurement of large and high-frequency dynamic deformations.However,the existing hysteresis of the current functional materials utilized in strain sensors significantly impedes the achievement of these properties.Herein,we introduce an ultralow dynamic hysteresis capacitive strain sensor using a low-hysteresis and high-relative-permittivity ionic liquid-elastomer composite as the dielectric material.Based on the low-hysteresis dielectric,the prepared capacitive strain sensors exhibit ultralow electrical hysteresis(2.20%at a strain rate of 100% s^(-1)and strain of100%)and maintain low electrical hysteresis(4.35%)even under extremely high strain rates and large dynamic strain loads(a strain rate of 500% s^(-1)and strain of 100%).Moreover,the strain sensor manifests exceptional cyclic stability under 50,000 cycles of 100%strain at a strain rate of 200% s^(-1);the response curves remain nearly identical throughout these 50,000 cycles.Furthermore,the ultralowhysteresis strain sensor was successfully applied to accurate and reliable real-time human-machine interactions,revealing its great potential in various fields,including electronic skin,flexible robotics,wearable electronics,and virtual reality.
文摘Figure 6(a)in the paper[Chin.Phys.B 33074203(2024)]was incorrect due to editorial oversight.The correct figure is provided.This modification does not affect the result presented in the paper.
基金supported by NSTIP strategic technologies programs,number(12-NAN2551-02)in the Kingdom of Saudi Arabia
文摘Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases.The presented review article is focusing on the recent developments of NO2gas sensors based on ZnO nanomaterials.The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms.Basic gas sensing characteristics such as gas response,response time,recovery time,selectivity,detection limit,stability and recyclability,etc are also discussed in this article.Further,the utilization of various ZnO nanomaterials such as nanorods,nanowires,nano-micro flowers,quantum dots,thin films and nanosheets,etc for the fabrication of NO2gas sensors are also presented.Moreover,various factors such as NO2concentrations,annealing temperature,ZnO morphologies and particle sizes,relative humidity,operating temperatures which are affecting the NO2gas sensing properties are discussed in this review.Finally,the review article is concluded and future directions are presented.
基金supported by the National Natural Science Foundation of China(Nos.82060599,82360647)the Natural Science Foundation of Jiangxi Province(Nos.20224BAB206091,20232BAB216101)+2 种基金the Science and Technology Project of the Education Department of Jiangxi Province(No.GJJ2201406)the Natural Science Foundation of Ganzhou(No.202101034482)the Science and Technology Project of Health Committee in Jiangxi Province(No.202131033)。
文摘Dopamine,a pivotal excitatory neurotransmitter,plays a crucial role in metabolic,cardiovascular,renal,central nervous,and endocrine systems.Abnormal dopamine within the human body can cause various diseases.Therefore,the precise quantification of dopamine levels,both in vivo and in vitro,holds paramount significance for clinical applications and physiological investigations.Carbon dots(CDs)exhibit a plethora of remarkable properties,including a substantial specific surface area,robust electrical conductivity,commendable biocompatibility,minimal toxicity,and high photostability.Considering these unique characteristics,CDs demonstrate substantial potential for fluorescent sensors,colorimetric sensors,and electrochemical sensors for dopamine detection.This review systematically examined the challenges and prospects for the utilization of CDs-based fluorescent sensors,electrochemical biosensors,and colorimetric sensors for monitoring dopamine levels in recent years.These findings unveil promising avenues for further advancements in the field of dopamine detection.
文摘As a laser passes through a scattering medium,the light interacts with the irregular reflections within the medium,resulting in light scattering and the formation of speckles.In this paper,an image sensor based on the combination of a coreless optical fiber and a digital camera is proposed for liquid refractive index sensing applications.The coreless fiber is used as a sensing unit,and the change in the speckle pattern is measured using the digital correlation method to detect the magnitude of the liquid's refractive index.The experimental results indicate that the laser image sensing technique is capable of effectively distinguishing liquid samples with refractive indices ranging from 1.332 8 to1.390 8,with a sensing sensitivity of-1.306 RIU-l.Moreover,the laser image sensing technique,with its advantages of high experimental reproducibility,simple system design,remote over-control,holds great research significance and potential application in laser communication and sensor integration.
文摘The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected to Faraday rotation are used as a replacement for electromagnetic transducers due to their immunity to electromagnetic interference. However, the principal parameter in this system, the sensitivity to magnetic fields or current, depends on the Verdet constant, which is low in the case of optical fibers. However, the optical path length can be increased to compensate for it by winding the fiber around a current carrying element a large number of turns. In this work, we study a current sensor, which is made up of a conductor coil with a fiber inside, thus increasing sensitivity. We study the effect of the inhomogeneity of the magnetic field induced by the current on the sensitivity of the optical fiber sensor.
基金the National Natural Science Foundation of China(Grant Nos.11804171,11674177,and 61775107)partly by the Natural Science Foundation of Tianjin,China(Grant No.16JCZDJC31000)partly by the Self-Made Experiment Teaching Instrument Project of Nankai University 2018(Grant No.2018NKZZYQ04).
文摘A fiber twist sensor using a Sagnac interferometer incorporating a tapered polarization-maintaining fiber(PMF)is proposed.The transmission properties of the sensor are investigated both theoretically and experimentally.Given the optoelastic effect,which depends on fiber geometry,the modal and group birefringences of the PMF can be controlled by applying different twist angles.The spectral wavelength shifts,free spectral ranges,and transmission losses of the original,microtapered,and etched PMFs were compared.Notably,the interference dips for the etched PMF move in opposite directions.As a result,the proposed PMF-based sensor could have multiparameter sensing applications.
文摘Based on the analysis of one-dimension inertial accelerometer movement model,from which the resolution of the accelerometer inertial mass displacement equation was derived,the response of the sensor sensing element to vibration and impact of various frequencies was studied.The theoretical and experimental results show that a reasonable configuration among the sensing element inherent frequency,environmental exciting frequency and the damp factors of the sensor is the key to prevent the sensor from damage.The sensor has good anti-vibrating impact ability when the relative damp factor is 0.7,and the environmental interferential vibrating frequency is less than 0.35 times of the inherent frequency of the sensing element.
基金partially supported by the National Natural Science Foundation of China(61571004)the Shanghai Natural Science Foundation(No.17ZR1429100)+1 种基金the National Science and Technology Major Project of China(No.2018ZX03001017-004)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20170074).
文摘As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protocols mainly focus on improving the efficiency of data transmitting and aggregating,alternately,the aim at enhancing the security of data.The performances of the secure data aggregation protocols are the trade-off of several metrics,which involves the transmission/fusion,the energy efficiency and the security in Wireless Sensor Network(WSN).Unfortunately,there is no paper in systematic analysis about the performance of the secure data aggregation protocols whether in IWSN or in WSN.In consideration of IWSN,we firstly review the security requirements and techniques in WSN data aggregation in this paper.Then,we give a holistic overview of the classical secure data aggregation protocols,which are divided into three categories:hop-by-hop encrypted data aggregation,end-to-end encrypted data aggregation and unencrypted secure data aggregation.Along this way,combining with the characteristics of industrial applications,we analyze the pros and cons of the existing security schemes in each category qualitatively,and realize that the security and the energy efficiency are suitable for IWSN.Finally,we make the conclusion about the techniques and approach in these categories,and highlight the future research directions of privacy preserving data aggregation in IWSN.
基金Project (No. 30470461) supported in part by the National NaturalScience Foundation of China
文摘To find the optimal routing is always an important topic in wireless sensor networks (WSNs). Considering a WSN where the nodes have limited energy, we propose a novel Energy*Delay model based on ant algorithms ("E&D ANTS" for short) to minimize the time delay in transferring a fixed number of data packets in an energy-constrained manner in one round. Our goal is not only to maximize the lifetime of the network but also to provide real-time data transmission services. However, because of the tradeoff of energy and delay in wireless network systems, the reinforcement learning (RL) algorithm is introduced to train the model. In this survey, the paradigm of E&D ANTS is explicated and compared to other ant-based routing algorithms like AntNet and AntChain about the issues of routing information, routing overhead and adaptation. Simulation results show that our method performs about seven times better than AntNet and also outperforms AntChain by more than 150% in terms of energy cost and delay per round.
基金sponsored by the National Key R&D Program of China(No.2018YFB1003201)the National Natural Science Foundation of China(No.61672296,No.61602261)Major Natural Science Research Projects in Colleges and Universities of Jiangsu Province(No.18KJA520008)
文摘Wireless transmission method in wireless sensor networks has put forward higher requirements for private protection technology. According to the packet loss problem of private protection algorithm based on slice technology, this paper proposes the data private protection algorithm with redundancy mechanism, which ensures privacy by privacy homomorphism mechanism and guarantees redundancy by carrying hidden data. Moreover,it selects the routing tree generated by CTP(Collection Tree Protocol) as routing path for data transmission. By dividing at the source node, it adds the hidden information and also the privacy homomorphism. At the same time,the information feedback tree is established between the destination node and the source node. In addition, the destination node immediately sends the packet loss information and the encryption key via the information feedback tree to the source node. As a result,it improves the reliability and privacy of data transmission and ensures the data redundancy.
基金supported by the National Natural Science Foundation of China(Nos.11674177,61775107,61835006 and 11704283)the Natural Science Foundation of Tianjin in China(No.16JCZDJC31000)the Scientific Research Planning and Development Project of Handan in China(No.1621203035)
文摘A twist sensor with hybrid few-mode tilted fiber Bragg grating(FM-TFBG) and few-mode long period grating(FM-LPG) in fiber laser cavity is demonstrated. The FM-LPG is utilized to excite LP11 core mode. The FM-TFBG is used for sensing. The transverse modes at 1 553.9 nm and 1 550.5 nm are LP01 and LP21 core modes, respectively, which are coupled from forward-propagating LP11 core mode. These two excitation wavelengths have opposite variation tendencies, which participate in sensing. The twist sensitivity of 0.16 dB/° from-40° to 40° is achieved. The proposed sensor has potentially used for structure monitoring in many areas.
基金Supported by Major Projects of the National Science and Technology (2010ZX03003-003-02) National 973 Key Project (2011CB302903)
文摘Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.
基金National Science Foundation,Grant number CMS-9900338
文摘Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake.
基金Project supported by the Provincial Natural Science Foundation of Gansu (No. 1606RJZA026)the Scientific and Technological Project of Chengguan District of Lanzhou (No. 2016-2-4)Institute of Sensor Technology, Gansu Academy of Science
文摘The three-dimensional hierarchical CuO and Au nanoparticles were synthesized by the hydrothermal method, respectively. The hierarchical CuO and the Au nanoparticles samples were characterized by X-ray diffraction and scanning electronic microscope, respectively. The as-synthesized CuO was assembled regularly from the nanosheets with thickness of 100 nm. The size of Au nanoparticles ranged from 50 to 200 nm. The hierarchical CuO gas sensors modified by different concentration of gold were fabricated. All the Au-loaded CuO gas sensors enhanced the response to ethanol and xylene while reducing the response to methanol, acetone, and formaldehyde. The results indicate that the Au nanoparticles prepared with PVP as surfactant can improve the selectivity of CuO gas sensors to ethanol gas for other common organic volatile gases. The improvement of gas sensing is mainly attributed to the different catalytic efficiency of the Au nanoparticles for different reactions. Meanwhile, the related mechanisms are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274037 and 61301046)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120101110031 and 20120101110054)
文摘Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
文摘Layered Surface Acoustic Wave (SAW) devices with an InO_x/SiN_u/36°YX LiTaO_3 structure were investigated for sensing low concentrations of hydrogen (H_2) and ozone (O_3) at different operating temperatures.The sensor consists of a 1μm thick silicon nitride (SiN_y) intermediate layer deposited by electron beam evaporation on a 36°Y-cut X-propagating piezoelectric lithium tantalate (LiTaO_3) substrate and a 100 nm thin indium oxide (InO_x) sensing layer deposited by R.F.magnetron sputtering.The device fabrication is described and the performance of the sensor is analyzed in terms of response magnitude as a function of operating temperature.Large frequency shifts of 360 kHz for 600μg/g of H_2 and 92 kHz for 40 ng/g O_3 were recorded.In addition,the surface morphology of the deposited films were investigated by Atomic Force Microscopy (AFM) and the chemical composition by X-Ray Photoelectron Spectroscopy (XPS) to correlate gas-sensing behavior to structural characteristics of the thin film.
基金supported by National Natural Science Foundation of China (Nos. 21271130 and 21371122)Shanghai Science and Technology Development Fund (Nos. 12ZR1421800 and 13520502800)International Joint Laboratory on Resource Chemistry (IJLRC)
文摘A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.