Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to...Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias.展开更多
Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, rece...Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH_(4)^(+))-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH_(4)^(+) concentration (200 μg N g^(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH_(4)^(+) amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH_(4)^(+)-rich alkaline soils.展开更多
Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0...Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–.展开更多
基金The National Key Research and Development Program of China(Grant No.2021YFD2201203)the 5·5 Engineering Research&Innovation Team Project of Beijing Forestry University(No.BLRC2023C05)the Key Research and Development Program of Shandong Province(No.2021SFGC02050102)。
文摘Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias.
基金supported by the National Key Research and Development Program of China(Nos.2017YFD0200707 and 2017YFD0200102)the Fundamental Research Funds for the Central Universities of China(No.2019FZJD007)for Yongchao LIANGthe National Natural Science Foundation of China(No.31800418)for Chang YIN.
文摘Disparities in the substrate affinity and tolerance threshold for ammonia have been believed to play a key role in driving niche differentiation between ammonia-oxidizing archaea (AOA) and bacteria (AOB);however, recent surveys argue that direct competition between AOA and AOB is also important in this phenomenon. Accordingly, it is reasonable to predict that diverse AOA lineages would grow in ammonium (NH_(4)^(+))-rich alkaline arable soils if AOB growth is suppressed. To test this hypothesis, a microcosm study was established using three different types of alkaline arable soils, in which a high NH_(4)^(+) concentration (200 μg N g^(-1) dry soil) was maintained by routinely replenishing urea and the activities of AOB were selectively inhibited by 1-octyne or 3,4-dimethylpyrazole phosphate (DMPP). Compared with amendment with urea alone, 1-octyne partially retarded AOB growth, while DMPP completely inhibited AOB. Both inhibitors accelerated the growth of AOA, with significantly higher ratios of abundance of AOA to AOB observed with DMPP amendment across soils. Nonmetric multidimensional scaling analysis (NMDS) indicated that different treatments significantly altered the community structures of both AOA and AOB and AOA OTUs enriched by high-NH_(4)^(+) amendment were taxonomically constrained across the soils tested and closely related to Nitrososphaera viennensis EN76 and N. garnensis. Given that these representative strains have been demonstrated to be sensitive to high ammonia concentrations, our results suggest that it is the competitiveness for ammonia, rather than disparities in substrate affinity and tolerance threshold for ammonia, that drives niche differentiation between these phylotypes and AOB in NH_(4)^(+)-rich alkaline soils.
基金supported by the National Key Technologies Research and Development Program(2016YFC0501404)the National Natural Science Foundation of China(41461064)
文摘Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–.