Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoa...Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing(RTA).A TiO_(2)interfacial layer plays a crucial role in ensuring homogeneous precursor deposition,enhancing light absorption,and forming efficient heterojunctions with Sb_(2)S_(3),thereby significantly improving charge separation and transport.RTA further improves crystallinity and interfacial contact,resulting in dense and uniform Sb_(2)S_(3)films with enlarged grains and fewer defects.The optimized Sb_(2)S_(3)photoanode achieves a photocurrent density of 2.51 mA/cm^(2)at 1.23 V vs.the reversible hydrogen electrode(RHE),one of the highest reported for Sb_(2)S_(3)without additional catalysts or passivation layers.To overcome the limitations of oxygen evolution reaction(OER),we employ the iodide oxidation reaction(IOR)as an alternative,significantly lowering the overpotential and improving charge transfer kinetics.Consequently,it produces a record photocurrent density of 8.9 mA/cm^(2)at 0.54 V vs.RHE.This work highlights the synergy between TiO_(2)interfacial engineering,RTA-induced crystallization,and IOR-driven oxidation,offering a promising pathway for efficient and scalable PEC hydrogen production.展开更多
The Regional Climate Model(RegCM)proves valuable for climate analysis and has been applied to a wide range of climate change aspects and other environmental issues at a regional scale.The model also demonstrated succe...The Regional Climate Model(RegCM)proves valuable for climate analysis and has been applied to a wide range of climate change aspects and other environmental issues at a regional scale.The model also demonstrated success in diverse areas of urban research,including urban heat island studies,extreme climate events analysis,assessing urban resilience,and evaluating urbanization impacts on climate and air quality.Recently,more studies have been conducted in utilizing RegCM to address climate change in cities,due to its enhanced ability over the years to capture meteorological phenomena at city scales.However,there are many challenges associated with its implementation in meso-scale research,which are attributed to various shortcomings and thus create room for further improvement in the model.This paper presents a comprehensive overview of the evolution of the RegCM over the years and its customisation across various parameters,demonstrating its versatility in urban climate studies and underscoring the model’s pivotal role in addressing multifaceted challenges in urban environments.By addressing these aspects,the paper offers valuable insights and recommendations for researchers seeking to enhance the accuracy and efficacy of urban climate simulations using the RegCM system,thereby contributing to the advancement of urban climate science and sustainability.展开更多
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management...Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture.展开更多
Assessing the resilience of rice varieties against bioterrorism agents is critical to safeguarding food security.This study evaluated Food and Drug Administration-approved and recognized as safe metallic oxide nanopar...Assessing the resilience of rice varieties against bioterrorism agents is critical to safeguarding food security.This study evaluated Food and Drug Administration-approved and recognized as safe metallic oxide nanoparticles(NPs)of zinc oxide(ZnO)and magnesium oxide(MgO)as protective strategies to reduce susceptibility in imported rice varieties to a biothreat model,Escherichia coli.Two types of rice(brown and white)from four countries(USA,Mexico,India,and Thailand)were treated with 60 mg/L NPs or their ionic forms and sterilized before inoculation.The treatments were analyzed for nutritional profiles,heavy metal content,and pathogen susceptibility.Rice organic compositions were characterized by Fourier transform infrared spectroscopy,and metal were contents quantified using inductively coupled plasma optical emission spectroscopy.Pathogenic response was monitored using ultraviolet mass spectrophotometry.The findings revealed that nutrient-rich varieties like brown rice from Mexico displayed reduced susceptibility to E.coli compared with white rice from India,which showed the highest susceptibility.NP fortification demonstrated significant antimicrobial efficacy,particularly with ZnO and MgO NPs,which were more effective than their ionic counterparts in inhibiting bacterial growth.Results showed that ZnO and MgO NP treatments reduced E.coli growth by 72%and 68%,respectively,compared with untreated controls.Brown rice from Mexican treated with MgO NPs exhibited the lowest optical density at 600 nm(OD6000.01),indicating significantly enhanced resistance to bacterial proliferation.This research underscores the potential of nano-fortification not only to improve pathogen resilience in rice but also to maintain its nutritional integrity.This study provides a foundational framework for enhancing food safety against bioterrorism agents and supports the development of resilient agricultural practices.展开更多
Photocatalysis is an advanced oxidation process where light exposure triggers a semiconducting nanomaterial(nano-photocatalyst)to generate electron-hole(e^(-)/h^(+))pairs and free radicals.This phenomenon is widely us...Photocatalysis is an advanced oxidation process where light exposure triggers a semiconducting nanomaterial(nano-photocatalyst)to generate electron-hole(e^(-)/h^(+))pairs and free radicals.This phenomenon is widely used for the photocatalysis-assisted removal of organic and other contaminants using wide range of nanophotocatalysts,offering an efficient approach to environmental remediation.However,the introduction of powdered nano-photocatalysts into water systems often leads to unintended secondary pollution in the form of residual nano-photocatalysts,ion leaching,free radicals,toxic by-products etc.Such practices potentially introduce emerging secondary contaminants into aquatic environments,posing risks to both aquatic life and human health.The resulting chemical by-products and intermediates can effectively induce chronic toxicity,neurological and developmental disorders,cardiovascular defects,and intestinal ailments in humans and aquatic species.Despite having a range of health and environmental consequences,this dark side of nano-photocatalysts has been comparatively less explored and discussed in the literature.In this review,the pros and cons of powder nanophotocatalysts are discussed in view of their advantages as well as disadvantages in wastewater treatment.The discussion encompasses their classification based on composition,dimensions,structure,and activity,as well as recent advancements in improving their photocatalytic efficiency.The article also explores the recent advances on their applications in photocatalytic removal of various water pollutants/contaminants of emerging concern(i.e.,organic pollutants,micro/nano plastics,heavy ions,disinfections,etc.)Furthermore,an emphasis on the role of such nano-photocatalysts as emerging(secondary)contaminants in water system,along with a thorough discussion of latest studies related to the health and environmental issues,has been discussed.Additionally,it addresses critical issues in applying powder nano-photocatalysts for wastewater detoxification and explores potential solutions to these challenges followed by future prospects.展开更多
The microstructural features of high-temperature sintered and CaO-MgO-Al_2O_3-SiO_2(CMAS) corroded air plasma sprayed Y_2O_3 stabilized ZrO_2(YSZ) thermal barrier coatings(TBCs) under the thermal gradient condition we...The microstructural features of high-temperature sintered and CaO-MgO-Al_2O_3-SiO_2(CMAS) corroded air plasma sprayed Y_2O_3 stabilized ZrO_2(YSZ) thermal barrier coatings(TBCs) under the thermal gradient condition were comparatively studied. As-sprayed YSZ has a lamellar structure and the lamellae are composed of closely aligned columnar crystals. The sintered and the CMAS corroded YSZ coatings maintain the t'-ZrO_2 phase as the as-sprayed YSZ coating. The sintered YSZ remains the lamellar structure with reduced interlamellar gaps and grains coarsening. After the CMAS corrosion, the top layer of the YSZ coating keeps its lamellar structure consisting of some columnar grains with the CMAS infiltration into the intergrain gaps and the formation of striped Zr_2Y_2 O_7. The typical lamellar structure transforms into more equiaxed grains in the middle and bottom layers of the ceramic coating along with significant infiltration of amorphous CMAS and anorthite formation in the bottom layer owing to the high contents of Ca and Al.展开更多
Field experiments were conducted from 2012 to 2015 in an arid region of Northwest China to investigate the effects of planting density on plant growth, yield, and water use efficiency(WUE) of maize for seed producti...Field experiments were conducted from 2012 to 2015 in an arid region of Northwest China to investigate the effects of planting density on plant growth, yield, and water use efficiency(WUE) of maize for seed production. Five planting densities of 6.75, 8.25, 9.75, 11.25 and 12.75 plants/m^2 were conducted in 2012, and a planting density of 14.25 plants/m^2 was added from 2013 to 2015. Through comparison with the Aqua Crop yield model, a modified model was developed to estimate the biomass accumulation and yield under different planting densities using adjustment coefficient for normalized biomass water productivity and harvest index. It was found that the modified yield model had a better performance and could generate results with higher determination coefficient and lower error. The results indicated that higher planting density increased the leaf area index and biomass accumulation, but decreased the biomass accumulation per plant. The total yield increased rapidly as planting density increased to 11.25 plants/m^2, but only a slight increase was observed when the density was greater than 11.25 plants/m^2. The WUE also reached the maximum when planting density was 11.25 plants/m^2, which was the recommended planting density of maize for seed production in Northwest China.展开更多
In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrus...In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.展开更多
Aging precipitation and solid solution heat treatment were carried out on three steels which have chromium content of 18%, manganese content of 12%, 15%, 18%, and nitrogen content of 0.43%, 0.53%, 0.67%, respectively....Aging precipitation and solid solution heat treatment were carried out on three steels which have chromium content of 18%, manganese content of 12%, 15%, 18%, and nitrogen content of 0.43%, 0.53%, 0.67%, respectively. The mechanisms of precipitation and solid solution of high nitrogen anstenitic stainless steel were studied using the scanning electron microscopy, transmission electron microscopy, electron probe micro analysis and mechanical testing. The results show that, Cr2N is the primary precipitate in the tested stainless steels instead of Cr23C6. Cr2N nucleates at austenitic grain boundaries and grows towards inner grains with a lameUar morphology. By means of pre-precipitation of Cr2N at 800 ~C, the microstructure of the steels at solid solution state can be refined, thus improving the strength and plasticity. After the proposed treatment, the tensile strength, the proof strength and the elongation of the tested steel reach 881 MPa, 542 MPa and 54%, respectively.展开更多
A micro-nano structure CaF_(2)chemical conversion layer was prepared on fluoride-treated AZ31 alloy,then the composite fluoride conversion film(CaF_(2)/MgF_(2))was modified by stearic acid(SA)and fabricated a superhyd...A micro-nano structure CaF_(2)chemical conversion layer was prepared on fluoride-treated AZ31 alloy,then the composite fluoride conversion film(CaF_(2)/MgF_(2))was modified by stearic acid(SA)and fabricated a superhydrophobic surface.The fluoride-treated magnesium,fluoride conversion film and superhydrophobic coating were characterized by SEM,EDS,XRD and FTIR.The properties of coatings1 adhesion and corrosion resistance were evaluated via tape test and electrochemical measurement.The cytocompatibility of the MgF_(2),CaF_(2)and superhydrophobic CaF_(2)/SA surface was investigated with bone marrow-derived mesenchymal stem cells(BMSCs)by direct culture for 24 h.The results showed that the superhydrophobic fluoride conversion coating composed of inner MgF_(2)layer and the outer CaF_(2)/SA composite layer had an average water contact angle of 152°.SA infiltrated into the micro-nano structure CaF_(2)layer and formed a strong adhesion with CaF_(2)layer.Furthermore,the super-hydrophobic coating showed higher barrier properties and corrosion resistance compared with the fluoride conversion film and fluoride-treated AZ31 alloy.The BMSC adhesion test results demonstrated MgF_(2)CaF_(2)and CaF_(2)/SA coatings were all nontoxic to BMSC.At the condition of in direct contact with cells,MgF_(2)showed higher cell density and enhanced the BMSCs proliferation,while CaF_(2)and CaF_(2)/SA coating showed no statistically difference in cell density compared with glass reference but the CaF_(2)and CaF_(2)/SA coating were not conducive to BMSCs adhesion.展开更多
Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical pr...Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.展开更多
Energy storage and conversion technologies have attracted increasing attention from academic and industrial communities due to the large demands from wide-ranging applications.Designing and developing high-performance...Energy storage and conversion technologies have attracted increasing attention from academic and industrial communities due to the large demands from wide-ranging applications.Designing and developing high-performance electrode materials are cruciual to improve the performance of energy storage and conversion devices.At present,various energy storage and conversion devices,i.e.,potassium-ion batteries(PIBs).展开更多
Polycaprolactone/hydroxyapatite(PCL/HA)composite coating was fabricated by a combination of hydrothermal and dipping methods to delay the degradation of Mg alloy AZ31 as bioresorbable materials.The PCL/HA coating was ...Polycaprolactone/hydroxyapatite(PCL/HA)composite coating was fabricated by a combination of hydrothermal and dipping methods to delay the degradation of Mg alloy AZ31 as bioresorbable materials.The PCL/HA coating was composed of nano rod-shape HA crystals and PCL filled in the space of HA crystals.Compared with the single HA coating,the binding strength between the PCL/HA composite coating and Mg alloy was obviously improved and the PCL/HA coating still adhered to the surface of AZ31 substrate even after 38 days of immersion.The electrochemical corrosion rate of HA coated sample was reduced by ten times after being filled by PCL.The electrochemical impedance spectroscopy(EIS)and immersion test results showed that the PCL/HA composite coating could provide a more effective barrier for Mg substrate than the HA coating alone.The cytocompatibility and the antibacterial property of HA coating and PCL/HA coating were evaluated by culturing with bone marrow-derived mesenchymal stem cells(BMSCs)and methicillin-resistant staphylococcus aureus(MRSA)for 24 h under direct culture conditions,respectively.The PCL/HA composite coating showed better BMSC cell compatibility,more suitable for BMSC adhesion than HA coating alone and showed a potential application prospect as a biological materials.However,from the perspective of clinical applications,the antibacterial property of PCL/HA composite coating needs to be further improved.展开更多
In order to clarify the recrystallization mechanism of low-densityδ-ferrite steel Fe-4AI-2Ni,interrupted and single-pass compression tests were carried out.In this regard,five deformation temperatures(750-950 at an i...In order to clarify the recrystallization mechanism of low-densityδ-ferrite steel Fe-4AI-2Ni,interrupted and single-pass compression tests were carried out.In this regard,five deformation temperatures(750-950 at an interval of 50°C)and different hold time were selected.It was observed that the softening and recrystallization fraction was enhaneed with increased deformation temperature and hold time.The original grain bounclaries were the preferred nucleation sites for recrystallized grains,and recrystallization had an impact on obtaining homogeneous and fine-grained structure.Recrystallization in the ferritic alloy commenced after a significant degree of softening,and the softening associated with recovery was appreciably less.The optimum rolling deformation temperature was identified to be greater than 900°C.展开更多
With the rising demand for fast-charging technology in electric vehicles and portable devices,significant efforts have been devoted to the development of energy storage and conversion technologies.Nowadays,remarkable ...With the rising demand for fast-charging technology in electric vehicles and portable devices,significant efforts have been devoted to the development of energy storage and conversion technologies.Nowadays,remarkable progress has been made in the field of various energy storage and conversion devices,i.e.,lithium-ion batteries(LIBs),lithium-metal batteries(LMBs),lithium-sulfur batteries(LSBs),sodium-ion batteries(SIBs),sodium-metal batteries(SMBs),magnesium-ion batteries(MIBs),zinc-ion batteries(ZIBs),electrochemical capacitors(ECs),the corresponding electrode materials have always been the focus and difficulty to further improve the electrochemical performance of the devices.展开更多
In this study, AA2519 alloy was initially processed by multi axial forging (MAF) at room and cryogenic temperatures. Subsequently, the microstructure and the mechanical behavior of the processed samples under quasi-st...In this study, AA2519 alloy was initially processed by multi axial forging (MAF) at room and cryogenic temperatures. Subsequently, the microstructure and the mechanical behavior of the processed samples under quasi-static loading were investigated to determine the influence of cryogenic forging on alloys’ subgrains dimensions, grain boundaries interactions, strength, ductility and toughness. In addition, the failure mechanisms at the tensile rupture surfaces were characterized using scanning electron micro-scope (SEM). The results show significant improvements in the strength, ductility and toughness of the alloy as a result of the cryogenic MAF process. The formation of nanoscale crystallite microstructure, heavily deformed grains with high density of grain boundaries and second phase breakage to finer particles were characterized as the main reasons for the increase in the mechanical properties of the cryogenic forged samples. The cryogenic processing of the alloy resulted in the formation of an ultrafine grained material with tensile strength and toughness that are ~41% and ~80% higher respectively after 2 cycles MAF when compared with the materials processed at ambient temperature. The fractography analysis on the tested materials shows a substantial ductility improvement in the cryoforged (CF) samples when compared to the room temperature forged (RTF) samples which is in alignment with their stress-strain profiles. However, extended forging at higher cycles than 2 cycles led only to increase in strength at the expense of ductility for both the CF and RTF samples.展开更多
Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early dia...Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early diagnosis, efficient prevention and therapy without toxicity. Yet, in spite of 25 years of research, there are still no such shuttles available. To this end, we have designed magnetic and gold nanoparticles (NP)-embedded silica nanoshuttles (MGNSs) with nanopores on their surface. Fluorescently labeled Doxombicin (DOX), a cancer drug, was loaded in the MGNSs as a payload. DOX loaded MGNSs were encapsulated in heat and pH sensitive polymer P(NIPAM-co- MAA) to enable controlled release of the payload. Magnetically-guided transport of MGNSs was examined in: (a) a glass capillary tube to simulate their delivery via blood vessels; and (b) porous hydrogels to simulate their transport in composite human tissues, including bone, cartilage, tendon, muscles and blood-brain barrier {BBB). The viscoelastic properties of hydrogels were examined by atomic force microscopy (AFM). Cellular uptake of DOX- loaded MGNSs and the subsequent pH and temperature-mediated release were demonstrated in differentiated human neurons derived from induced pluripotent stem cells (iPSCs) as well as epithelial HeLa cells. The presence of embedded iron and gold NPs in silica shells and polymer-coating are supported by SEM and TEM. Fluorescence spectroscopy and microscopy documented DOX loading in the MGNSs. Time-dependent transport of MGNSs guided by an external magnetic field was observed in both glass capillary tubes and in the porous hydrogel. AFM results affirmed that the stiffness of the hydrogels model the rigidity range from soft tissues to bone. pH and temperature-dependent drug release analysis showed stimuli responsive and gradual drug release. Cells' viability MTT assays showed that MGNSs are non-toxic. The cell death from on-demand DOX release was observed in both neurons and epithelial cells even though the drug release efficiency was higher in neurons. Therefore, development of smart nanoshuttles have significant translational potential for controlled delivery of theranostics' payloads and precisely guided transport in specified tissues and organs (for example, bone, cartilage, tendon, bone marrow, heart, lung, liver, kidney, and brain) for highly efficient personalized medicine applications.展开更多
The correlation of electrochemical measurements with materials characterization has advanced our understanding of operation and degradation mechanisms in electrochemical energy storage and many other fields.Yet,often ...The correlation of electrochemical measurements with materials characterization has advanced our understanding of operation and degradation mechanisms in electrochemical energy storage and many other fields.Yet,often these correlations are qualitative,preventing the unambiguous identification of both operational principles and the root causes of performance losses.Here we suggest quantitative approaches to define competing mechanisms and determine their relative contributions.We illustrate the importance of quantitative methodologies over a range of electrochemical systems and highlight the need to consider the effect of the experimental design and measurement itself.These approaches will reveal the most detrimental degradation mechanisms and enable the development of strategies to suppress,stabilize or eliminate them,leading to materials and devices with longer lifetimes,reduced environmental impact,and improved performance.展开更多
Grain refinement renders Mo-Ti-alloyed medium-carbon martensitic steel to exhibit high hardness,high strength,and good toughness,but the erosion-corrosion resistance of steel in a corrosive slurry environment is not k...Grain refinement renders Mo-Ti-alloyed medium-carbon martensitic steel to exhibit high hardness,high strength,and good toughness,but the erosion-corrosion resistance of steel in a corrosive slurry environment is not known.Mo-Ti-alloyed medium-carbon martensitic steel is compared with Ni-Cr-Mo-alloyed medium-carbon martensitic steel,and the erosion-corrosion resistance of those two steels under impingement by NaCl solution with gravels has been investigated.Three components,pure-corrosion rate,pure-erosion rate,and synergistic effect of erosion and corrosion(SEEC)of erosion-corrosion rate,were quantified.The pure-corrosion and pure-erosion rates of Mo-Ti-alloyed steel were higher than those of Ni-Cr-Mo-alloyed one;however,its erosion-corrosion rate was relatively lower because of a weak SEEC.Surface plastic deformation and work hardening due to gravel impingement were the essential reason for SEEC,which could be reduced by grain refinement,and consequently,Mo-Ti-alloyed steel with finer grains had better erosion-corrosion resistance.Grain refinement could be an effective way to improve the erosion-corrosion resistance of martensitic steels.展开更多
The significance of different deoxidation practises on the ductility and impact toughness of next generation of microalloyed heavy plates was elucidated to explore the best deoxidation practice in obtaining required m...The significance of different deoxidation practises on the ductility and impact toughness of next generation of microalloyed heavy plates was elucidated to explore the best deoxidation practice in obtaining required mechanical properties,which was judged by the combined effects of composition,size and number density of inclusions on the ductility of the experimental high-strength low alloy steel.The impurity contents,i.e.,total O+N+S contents,of 82×10^(-6)(Al-killed)and 118×10^(-6)(Zr-killed)have been induced to characterize both the steels.Ductility was characterized using tensile and Charpy V-notch testing.The number,size and composition of the inclusions were characterized using a field emission scanning electron microscope with an energy dispersive spectrometer.In the Al-killed steel,the inclusion structure consisted of titanium nitrides,stringer calcium aluminates and elongated manganese sulfides,whereas in the Zr-killed steel,the inclusion structure consisted of mainly fine spherical oxide inclusions with sulphide shells.The impurity content did not have a significant effect on the number density of inclusions,as with higher and lower impurity content,the number of inclusions was 83.7 and 78.8 mm^(-2),respectively.However,the size distribution of the inclusions,especially the coarse inclusions with their longest length greater than 8μm,differsmuch from each other.The number density of coarse inclusions differs from 0.8 to 1.1 mm^(-2) with processing,and in Al-killed steel,55.5% of the coarse inclusions were titanium nitrides or manganese sulfides,whereas in Zr-killed steel,only 22.5% of the coarse inclusions were titanium nitrides and manganese sulfides.Coarse titanium nitrides were especially detrimental to the impact toughness.The number density of them should be below 0.33 mm-2 in order to guarantee the best possible toughness in the steel in question.The average crystallographic grain size detected by electron backscattered diffraction of Zr-killed steel(4.28±2.70μm)was smaller than that of Al-killed steel(6.00±4.80μm).As a result from the grain refinement and sulphide shape control,Zr-killed steel exhibited superior impact toughness(223±70 J)at -80℃ as compared with Al-killed steel(153±68 J).Thus,Zr-killed steel was observed to provide good performance in terms of mechanical properties as compared with Al-killed steel.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant fu nded by the Korean government(MSIT)(No.RS-2024-00335976)。
文摘Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing(RTA).A TiO_(2)interfacial layer plays a crucial role in ensuring homogeneous precursor deposition,enhancing light absorption,and forming efficient heterojunctions with Sb_(2)S_(3),thereby significantly improving charge separation and transport.RTA further improves crystallinity and interfacial contact,resulting in dense and uniform Sb_(2)S_(3)films with enlarged grains and fewer defects.The optimized Sb_(2)S_(3)photoanode achieves a photocurrent density of 2.51 mA/cm^(2)at 1.23 V vs.the reversible hydrogen electrode(RHE),one of the highest reported for Sb_(2)S_(3)without additional catalysts or passivation layers.To overcome the limitations of oxygen evolution reaction(OER),we employ the iodide oxidation reaction(IOR)as an alternative,significantly lowering the overpotential and improving charge transfer kinetics.Consequently,it produces a record photocurrent density of 8.9 mA/cm^(2)at 0.54 V vs.RHE.This work highlights the synergy between TiO_(2)interfacial engineering,RTA-induced crystallization,and IOR-driven oxidation,offering a promising pathway for efficient and scalable PEC hydrogen production.
文摘The Regional Climate Model(RegCM)proves valuable for climate analysis and has been applied to a wide range of climate change aspects and other environmental issues at a regional scale.The model also demonstrated success in diverse areas of urban research,including urban heat island studies,extreme climate events analysis,assessing urban resilience,and evaluating urbanization impacts on climate and air quality.Recently,more studies have been conducted in utilizing RegCM to address climate change in cities,due to its enhanced ability over the years to capture meteorological phenomena at city scales.However,there are many challenges associated with its implementation in meso-scale research,which are attributed to various shortcomings and thus create room for further improvement in the model.This paper presents a comprehensive overview of the evolution of the RegCM over the years and its customisation across various parameters,demonstrating its versatility in urban climate studies and underscoring the model’s pivotal role in addressing multifaceted challenges in urban environments.By addressing these aspects,the paper offers valuable insights and recommendations for researchers seeking to enhance the accuracy and efficacy of urban climate simulations using the RegCM system,thereby contributing to the advancement of urban climate science and sustainability.
基金supported by the Research Platform for biomedical and Health Technology, NUS (Suzhou) Research Institute (RP-BHT-Prof. LEE Chengkuo)RIE Advanced Manufacturing and Engineering (AME) Programmatic Grant (Grant A18A4b0055)+1 种基金RIE 2025-Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) (Grant I2301E0027)Reimagine Research Scheme projects, National University of Singapore, A-0009037-03-00 and A-0009454-01-00 and Reimagine Research Scheme projects, National University of Singapore, A-0004772-00-00 and A-0004772-01-00。
文摘Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges.These systems facilitate informed decisions that enhance efficiency in broader environmental management.Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources,low durability under harsh conditions,non-transparent or non-biocompatible materials,and complex structures.Herein,a multifunctional hydrogel is developed,which can fulfill all the above requirements and build selfsustainable outdoor monitoring systems solely by it.It can serve as a stable energy harvester that continuously generates direct current output with an average power density of 1.9 W m^(-3)for nearly 60 days of operation in normal environments(24℃,60%RH),with an energy density of around 1.36×10^(7)J m^(-3).It also shows good self-recoverability in severe environments(45℃,30%RH)in nearly 40 days of continuous operation.Moreover,this hydrogel enables noninvasive and self-powered monitoring of leaf relative water content,providing critical data on evaluating plant health,previously obtainable only through invasive or high-power consumption methods.Its potential extends to acting as other self-powered environmental sensors.This multifunctional hydrogel enables self-sustainable outdoor systems with scalable and low-cost production,paving the way for future agriculture.
文摘Assessing the resilience of rice varieties against bioterrorism agents is critical to safeguarding food security.This study evaluated Food and Drug Administration-approved and recognized as safe metallic oxide nanoparticles(NPs)of zinc oxide(ZnO)and magnesium oxide(MgO)as protective strategies to reduce susceptibility in imported rice varieties to a biothreat model,Escherichia coli.Two types of rice(brown and white)from four countries(USA,Mexico,India,and Thailand)were treated with 60 mg/L NPs or their ionic forms and sterilized before inoculation.The treatments were analyzed for nutritional profiles,heavy metal content,and pathogen susceptibility.Rice organic compositions were characterized by Fourier transform infrared spectroscopy,and metal were contents quantified using inductively coupled plasma optical emission spectroscopy.Pathogenic response was monitored using ultraviolet mass spectrophotometry.The findings revealed that nutrient-rich varieties like brown rice from Mexico displayed reduced susceptibility to E.coli compared with white rice from India,which showed the highest susceptibility.NP fortification demonstrated significant antimicrobial efficacy,particularly with ZnO and MgO NPs,which were more effective than their ionic counterparts in inhibiting bacterial growth.Results showed that ZnO and MgO NP treatments reduced E.coli growth by 72%and 68%,respectively,compared with untreated controls.Brown rice from Mexican treated with MgO NPs exhibited the lowest optical density at 600 nm(OD6000.01),indicating significantly enhanced resistance to bacterial proliferation.This research underscores the potential of nano-fortification not only to improve pathogen resilience in rice but also to maintain its nutritional integrity.This study provides a foundational framework for enhancing food safety against bioterrorism agents and supports the development of resilient agricultural practices.
基金Council of Scientific and Industrial Research(CSIR),New Delhi for providing Junior Research Fellowship(JRF),Ministry of Education(MoE)New Delhi and National Institute of Technology(NIT),Hamirpur for financial support.
文摘Photocatalysis is an advanced oxidation process where light exposure triggers a semiconducting nanomaterial(nano-photocatalyst)to generate electron-hole(e^(-)/h^(+))pairs and free radicals.This phenomenon is widely used for the photocatalysis-assisted removal of organic and other contaminants using wide range of nanophotocatalysts,offering an efficient approach to environmental remediation.However,the introduction of powdered nano-photocatalysts into water systems often leads to unintended secondary pollution in the form of residual nano-photocatalysts,ion leaching,free radicals,toxic by-products etc.Such practices potentially introduce emerging secondary contaminants into aquatic environments,posing risks to both aquatic life and human health.The resulting chemical by-products and intermediates can effectively induce chronic toxicity,neurological and developmental disorders,cardiovascular defects,and intestinal ailments in humans and aquatic species.Despite having a range of health and environmental consequences,this dark side of nano-photocatalysts has been comparatively less explored and discussed in the literature.In this review,the pros and cons of powder nanophotocatalysts are discussed in view of their advantages as well as disadvantages in wastewater treatment.The discussion encompasses their classification based on composition,dimensions,structure,and activity,as well as recent advancements in improving their photocatalytic efficiency.The article also explores the recent advances on their applications in photocatalytic removal of various water pollutants/contaminants of emerging concern(i.e.,organic pollutants,micro/nano plastics,heavy ions,disinfections,etc.)Furthermore,an emphasis on the role of such nano-photocatalysts as emerging(secondary)contaminants in water system,along with a thorough discussion of latest studies related to the health and environmental issues,has been discussed.Additionally,it addresses critical issues in applying powder nano-photocatalysts for wastewater detoxification and explores potential solutions to these challenges followed by future prospects.
基金supported financially by the National Natural Science Foundation of China (Nos. 51590891 and 11772288)the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, the opening project No. KFJJ15-05M)"Hundred Talents Program" of Hunan Province, China
文摘The microstructural features of high-temperature sintered and CaO-MgO-Al_2O_3-SiO_2(CMAS) corroded air plasma sprayed Y_2O_3 stabilized ZrO_2(YSZ) thermal barrier coatings(TBCs) under the thermal gradient condition were comparatively studied. As-sprayed YSZ has a lamellar structure and the lamellae are composed of closely aligned columnar crystals. The sintered and the CMAS corroded YSZ coatings maintain the t'-ZrO_2 phase as the as-sprayed YSZ coating. The sintered YSZ remains the lamellar structure with reduced interlamellar gaps and grains coarsening. After the CMAS corrosion, the top layer of the YSZ coating keeps its lamellar structure consisting of some columnar grains with the CMAS infiltration into the intergrain gaps and the formation of striped Zr_2Y_2 O_7. The typical lamellar structure transforms into more equiaxed grains in the middle and bottom layers of the ceramic coating along with significant infiltration of amorphous CMAS and anorthite formation in the bottom layer owing to the high contents of Ca and Al.
基金the research grants from the National Natural Science Foundation of China (51379208, 91425302, 51621061)the Government Public Research Funds for Projects of the Ministry of Agriculture (201503125)the Discipline Innovative Engineering Plan (111 Program, B14002)
文摘Field experiments were conducted from 2012 to 2015 in an arid region of Northwest China to investigate the effects of planting density on plant growth, yield, and water use efficiency(WUE) of maize for seed production. Five planting densities of 6.75, 8.25, 9.75, 11.25 and 12.75 plants/m^2 were conducted in 2012, and a planting density of 14.25 plants/m^2 was added from 2013 to 2015. Through comparison with the Aqua Crop yield model, a modified model was developed to estimate the biomass accumulation and yield under different planting densities using adjustment coefficient for normalized biomass water productivity and harvest index. It was found that the modified yield model had a better performance and could generate results with higher determination coefficient and lower error. The results indicated that higher planting density increased the leaf area index and biomass accumulation, but decreased the biomass accumulation per plant. The total yield increased rapidly as planting density increased to 11.25 plants/m^2, but only a slight increase was observed when the density was greater than 11.25 plants/m^2. The WUE also reached the maximum when planting density was 11.25 plants/m^2, which was the recommended planting density of maize for seed production in Northwest China.
基金Project(51674077) supported by the National Natural Science Foundation of ChinaProject(2018YFB2001800) supported by the National Research and Development Program of China
文摘In order to investigate the effects of solid solution atoms, precipitated particles and cold deformation on the microstructures and properties of Al-Sc-Zr alloys, the Al-Sc-Zr alloys prepared by continuous rheo-extrusion were treated by thermomechanical treatment, analyzed for conductivity and mechanical properties by tensile and microhardness testing, and characterized using optical microscope, TEM and STEM. A mathematical model was established to quantitatively characterize the contribution of solid solution atoms, precipitates and cold deformation to the conductivity of the alloy. The results show that the strength of Al alloy can be significantly improved by solid solution, aging and cold deformation, and the quantitative impacts of solution atoms, precipitates and cold deformation on the conductivity of Al alloy are 10.5%(IACS), 2.3%(IACS) and 0.5%(IACS), respectively. Aging and cold deformation treatments are the keys to obtain high-strength and high-conductivity aluminum alloy wires.
基金Project(50974014) supported by the National Natural Science Foundation of China
文摘Aging precipitation and solid solution heat treatment were carried out on three steels which have chromium content of 18%, manganese content of 12%, 15%, 18%, and nitrogen content of 0.43%, 0.53%, 0.67%, respectively. The mechanisms of precipitation and solid solution of high nitrogen anstenitic stainless steel were studied using the scanning electron microscopy, transmission electron microscopy, electron probe micro analysis and mechanical testing. The results show that, Cr2N is the primary precipitate in the tested stainless steels instead of Cr23C6. Cr2N nucleates at austenitic grain boundaries and grows towards inner grains with a lameUar morphology. By means of pre-precipitation of Cr2N at 800 ~C, the microstructure of the steels at solid solution state can be refined, thus improving the strength and plasticity. After the proposed treatment, the tensile strength, the proof strength and the elongation of the tested steel reach 881 MPa, 542 MPa and 54%, respectively.
基金supported by the National Natural Science Foundation of China[Grant No.51201192]Natural Science Foundation of Chongqing[Grant No.cstc2018jcyj A2285]。
文摘A micro-nano structure CaF_(2)chemical conversion layer was prepared on fluoride-treated AZ31 alloy,then the composite fluoride conversion film(CaF_(2)/MgF_(2))was modified by stearic acid(SA)and fabricated a superhydrophobic surface.The fluoride-treated magnesium,fluoride conversion film and superhydrophobic coating were characterized by SEM,EDS,XRD and FTIR.The properties of coatings1 adhesion and corrosion resistance were evaluated via tape test and electrochemical measurement.The cytocompatibility of the MgF_(2),CaF_(2)and superhydrophobic CaF_(2)/SA surface was investigated with bone marrow-derived mesenchymal stem cells(BMSCs)by direct culture for 24 h.The results showed that the superhydrophobic fluoride conversion coating composed of inner MgF_(2)layer and the outer CaF_(2)/SA composite layer had an average water contact angle of 152°.SA infiltrated into the micro-nano structure CaF_(2)layer and formed a strong adhesion with CaF_(2)layer.Furthermore,the super-hydrophobic coating showed higher barrier properties and corrosion resistance compared with the fluoride conversion film and fluoride-treated AZ31 alloy.The BMSC adhesion test results demonstrated MgF_(2)CaF_(2)and CaF_(2)/SA coatings were all nontoxic to BMSC.At the condition of in direct contact with cells,MgF_(2)showed higher cell density and enhanced the BMSCs proliferation,while CaF_(2)and CaF_(2)/SA coating showed no statistically difference in cell density compared with glass reference but the CaF_(2)and CaF_(2)/SA coating were not conducive to BMSCs adhesion.
基金the Coordinación de la Investigación Científica(CIC)of the Universidad Michoacana de San Nicolás de Hidalgo(UMSNH-México)for the support during this project(CIC-UMSNH-1.8)sponsored by the National Council on Science and Technology(Consejo Nacional de Ciencia y Tecnología-México)and would like to thank for the support during this project N.B.254928
文摘Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.
文摘Energy storage and conversion technologies have attracted increasing attention from academic and industrial communities due to the large demands from wide-ranging applications.Designing and developing high-performance electrode materials are cruciual to improve the performance of energy storage and conversion devices.At present,various energy storage and conversion devices,i.e.,potassium-ion batteries(PIBs).
基金supported by the National Natural Science Foundation of China[Grant No.51201192]Natural Science Foundation of Chongqing[Grant No.cstc2018jcyj A2285cstc2018jcyjA 2285]。
文摘Polycaprolactone/hydroxyapatite(PCL/HA)composite coating was fabricated by a combination of hydrothermal and dipping methods to delay the degradation of Mg alloy AZ31 as bioresorbable materials.The PCL/HA coating was composed of nano rod-shape HA crystals and PCL filled in the space of HA crystals.Compared with the single HA coating,the binding strength between the PCL/HA composite coating and Mg alloy was obviously improved and the PCL/HA coating still adhered to the surface of AZ31 substrate even after 38 days of immersion.The electrochemical corrosion rate of HA coated sample was reduced by ten times after being filled by PCL.The electrochemical impedance spectroscopy(EIS)and immersion test results showed that the PCL/HA composite coating could provide a more effective barrier for Mg substrate than the HA coating alone.The cytocompatibility and the antibacterial property of HA coating and PCL/HA coating were evaluated by culturing with bone marrow-derived mesenchymal stem cells(BMSCs)and methicillin-resistant staphylococcus aureus(MRSA)for 24 h under direct culture conditions,respectively.The PCL/HA composite coating showed better BMSC cell compatibility,more suitable for BMSC adhesion than HA coating alone and showed a potential application prospect as a biological materials.However,from the perspective of clinical applications,the antibacterial property of PCL/HA composite coating needs to be further improved.
文摘In order to clarify the recrystallization mechanism of low-densityδ-ferrite steel Fe-4AI-2Ni,interrupted and single-pass compression tests were carried out.In this regard,five deformation temperatures(750-950 at an interval of 50°C)and different hold time were selected.It was observed that the softening and recrystallization fraction was enhaneed with increased deformation temperature and hold time.The original grain bounclaries were the preferred nucleation sites for recrystallized grains,and recrystallization had an impact on obtaining homogeneous and fine-grained structure.Recrystallization in the ferritic alloy commenced after a significant degree of softening,and the softening associated with recovery was appreciably less.The optimum rolling deformation temperature was identified to be greater than 900°C.
文摘With the rising demand for fast-charging technology in electric vehicles and portable devices,significant efforts have been devoted to the development of energy storage and conversion technologies.Nowadays,remarkable progress has been made in the field of various energy storage and conversion devices,i.e.,lithium-ion batteries(LIBs),lithium-metal batteries(LMBs),lithium-sulfur batteries(LSBs),sodium-ion batteries(SIBs),sodium-metal batteries(SMBs),magnesium-ion batteries(MIBs),zinc-ion batteries(ZIBs),electrochemical capacitors(ECs),the corresponding electrode materials have always been the focus and difficulty to further improve the electrochemical performance of the devices.
文摘In this study, AA2519 alloy was initially processed by multi axial forging (MAF) at room and cryogenic temperatures. Subsequently, the microstructure and the mechanical behavior of the processed samples under quasi-static loading were investigated to determine the influence of cryogenic forging on alloys’ subgrains dimensions, grain boundaries interactions, strength, ductility and toughness. In addition, the failure mechanisms at the tensile rupture surfaces were characterized using scanning electron micro-scope (SEM). The results show significant improvements in the strength, ductility and toughness of the alloy as a result of the cryogenic MAF process. The formation of nanoscale crystallite microstructure, heavily deformed grains with high density of grain boundaries and second phase breakage to finer particles were characterized as the main reasons for the increase in the mechanical properties of the cryogenic forged samples. The cryogenic processing of the alloy resulted in the formation of an ultrafine grained material with tensile strength and toughness that are ~41% and ~80% higher respectively after 2 cycles MAF when compared with the materials processed at ambient temperature. The fractography analysis on the tested materials shows a substantial ductility improvement in the cryoforged (CF) samples when compared to the room temperature forged (RTF) samples which is in alignment with their stress-strain profiles. However, extended forging at higher cycles than 2 cycles led only to increase in strength at the expense of ductility for both the CF and RTF samples.
基金supported in part by the National Institute on Aging of National Institutes of Health(Grant AG028709)the FUMEC and AMC for funds to support the 2016 summer research yield at the University of California in San Diego
文摘Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early diagnosis, efficient prevention and therapy without toxicity. Yet, in spite of 25 years of research, there are still no such shuttles available. To this end, we have designed magnetic and gold nanoparticles (NP)-embedded silica nanoshuttles (MGNSs) with nanopores on their surface. Fluorescently labeled Doxombicin (DOX), a cancer drug, was loaded in the MGNSs as a payload. DOX loaded MGNSs were encapsulated in heat and pH sensitive polymer P(NIPAM-co- MAA) to enable controlled release of the payload. Magnetically-guided transport of MGNSs was examined in: (a) a glass capillary tube to simulate their delivery via blood vessels; and (b) porous hydrogels to simulate their transport in composite human tissues, including bone, cartilage, tendon, muscles and blood-brain barrier {BBB). The viscoelastic properties of hydrogels were examined by atomic force microscopy (AFM). Cellular uptake of DOX- loaded MGNSs and the subsequent pH and temperature-mediated release were demonstrated in differentiated human neurons derived from induced pluripotent stem cells (iPSCs) as well as epithelial HeLa cells. The presence of embedded iron and gold NPs in silica shells and polymer-coating are supported by SEM and TEM. Fluorescence spectroscopy and microscopy documented DOX loading in the MGNSs. Time-dependent transport of MGNSs guided by an external magnetic field was observed in both glass capillary tubes and in the porous hydrogel. AFM results affirmed that the stiffness of the hydrogels model the rigidity range from soft tissues to bone. pH and temperature-dependent drug release analysis showed stimuli responsive and gradual drug release. Cells' viability MTT assays showed that MGNSs are non-toxic. The cell death from on-demand DOX release was observed in both neurons and epithelial cells even though the drug release efficiency was higher in neurons. Therefore, development of smart nanoshuttles have significant translational potential for controlled delivery of theranostics' payloads and precisely guided transport in specified tissues and organs (for example, bone, cartilage, tendon, bone marrow, heart, lung, liver, kidney, and brain) for highly efficient personalized medicine applications.
基金supported in full by the Joint Center for Energy Storage Researchan Energy Innovation Hub funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences.
文摘The correlation of electrochemical measurements with materials characterization has advanced our understanding of operation and degradation mechanisms in electrochemical energy storage and many other fields.Yet,often these correlations are qualitative,preventing the unambiguous identification of both operational principles and the root causes of performance losses.Here we suggest quantitative approaches to define competing mechanisms and determine their relative contributions.We illustrate the importance of quantitative methodologies over a range of electrochemical systems and highlight the need to consider the effect of the experimental design and measurement itself.These approaches will reveal the most detrimental degradation mechanisms and enable the development of strategies to suppress,stabilize or eliminate them,leading to materials and devices with longer lifetimes,reduced environmental impact,and improved performance.
基金support from National Natural Science Foundation of China(Grant Nos.U20A20279,12072245,and 52071238)High Technical Key Project of Hubei Province(2021BAA057)Taishan Industrial Talent Project,Wuhan University,of Science and Technology,(Grant No.2018 TDX07)and i11 Project(D18018)。
文摘Grain refinement renders Mo-Ti-alloyed medium-carbon martensitic steel to exhibit high hardness,high strength,and good toughness,but the erosion-corrosion resistance of steel in a corrosive slurry environment is not known.Mo-Ti-alloyed medium-carbon martensitic steel is compared with Ni-Cr-Mo-alloyed medium-carbon martensitic steel,and the erosion-corrosion resistance of those two steels under impingement by NaCl solution with gravels has been investigated.Three components,pure-corrosion rate,pure-erosion rate,and synergistic effect of erosion and corrosion(SEEC)of erosion-corrosion rate,were quantified.The pure-corrosion and pure-erosion rates of Mo-Ti-alloyed steel were higher than those of Ni-Cr-Mo-alloyed one;however,its erosion-corrosion rate was relatively lower because of a weak SEEC.Surface plastic deformation and work hardening due to gravel impingement were the essential reason for SEEC,which could be reduced by grain refinement,and consequently,Mo-Ti-alloyed steel with finer grains had better erosion-corrosion resistance.Grain refinement could be an effective way to improve the erosion-corrosion resistance of martensitic steels.
基金support from the National Natural Science Foundation of China(U1532268 and U20A20279)Wuhan Science and Technology Program(Grant No.2019010701011382)+1 种基金the 111 ProjectHigher Education Discipline Innovation Project(Grant No.18018).
文摘The significance of different deoxidation practises on the ductility and impact toughness of next generation of microalloyed heavy plates was elucidated to explore the best deoxidation practice in obtaining required mechanical properties,which was judged by the combined effects of composition,size and number density of inclusions on the ductility of the experimental high-strength low alloy steel.The impurity contents,i.e.,total O+N+S contents,of 82×10^(-6)(Al-killed)and 118×10^(-6)(Zr-killed)have been induced to characterize both the steels.Ductility was characterized using tensile and Charpy V-notch testing.The number,size and composition of the inclusions were characterized using a field emission scanning electron microscope with an energy dispersive spectrometer.In the Al-killed steel,the inclusion structure consisted of titanium nitrides,stringer calcium aluminates and elongated manganese sulfides,whereas in the Zr-killed steel,the inclusion structure consisted of mainly fine spherical oxide inclusions with sulphide shells.The impurity content did not have a significant effect on the number density of inclusions,as with higher and lower impurity content,the number of inclusions was 83.7 and 78.8 mm^(-2),respectively.However,the size distribution of the inclusions,especially the coarse inclusions with their longest length greater than 8μm,differsmuch from each other.The number density of coarse inclusions differs from 0.8 to 1.1 mm^(-2) with processing,and in Al-killed steel,55.5% of the coarse inclusions were titanium nitrides or manganese sulfides,whereas in Zr-killed steel,only 22.5% of the coarse inclusions were titanium nitrides and manganese sulfides.Coarse titanium nitrides were especially detrimental to the impact toughness.The number density of them should be below 0.33 mm-2 in order to guarantee the best possible toughness in the steel in question.The average crystallographic grain size detected by electron backscattered diffraction of Zr-killed steel(4.28±2.70μm)was smaller than that of Al-killed steel(6.00±4.80μm).As a result from the grain refinement and sulphide shape control,Zr-killed steel exhibited superior impact toughness(223±70 J)at -80℃ as compared with Al-killed steel(153±68 J).Thus,Zr-killed steel was observed to provide good performance in terms of mechanical properties as compared with Al-killed steel.