Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic...Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.展开更多
A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.The...A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744.展开更多
Artificial photosynthesis of hydrogen peroxide(H_(2)O_(2))using covalent organic frameworks(COFs)as photocatalysts holds promise for future applications.However,the influence of linkage chemistry on the photoelectroch...Artificial photosynthesis of hydrogen peroxide(H_(2)O_(2))using covalent organic frameworks(COFs)as photocatalysts holds promise for future applications.However,the influence of linkage chemistry on the photoelectrochemical properties and photocatalytic performance of COFs remains a significant challenge.Herein,we designed and synthesized a model system with different linkages,including imine-,amine-,azo-linked COFs,then investigated their photocatalytic activity of overall H_(2)O_(2)production.The photocatalytic results revealed varying activities for H_(2)O_(2)synthesis among these COFs,with the azo-linked TTA-Azo-COF(COF synthesized by 4,4’,4’’-(1,3,5-triazine-2,4,6-triyl)-trianiline and terephthalaldehyde)demonstrating the highest overall H2O2 photosynthesis activity of 2516μmol g^(–1)h^(–1)in an O2 atmosphere without any sacrificial agents,which is 6.72 and 2.85 times higher than that of imine-linked TTA-COF and amine-linked TTA-COF-AR,respectively.Furthermore,TTA-Azo-COF maintained a high photosynthesis H2O2 activity of 2116μmol g^(–1)h^(–1)under an air atmosphere,outperforming most COF-based photocatalytic systems under similar reaction conditions.Further characterizations and density functional theory calculations reveal these various linkages in different COFs result in distinct visible-light absorption,charge transfer capacities and formation energy barriers of key intermediates.This work revealed the significant impact of linkages on COFs and provided comprehensive guidance for the rational design of COFs with tailored linkages to fulfill specific requirements for future applications.展开更多
For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and ...For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and on reactive(Ni)electrodes.On the inert Mo electrode,the reduction of Er(Ⅲ)to Er(0)is a onestep with three-electron and quasi-reversible reaction process.Meanwhile,the apparent generation Gibbs free energy and activity coefficients of Er(Ⅲ)on the inert electrode were determined.Thereafter,the electrochemical reduction of Er(Ⅲ)on the Ni electrode was emphatically investigated.Er(Ⅲ)is reduced at a corrected potential owing to the formation of Ni-Er alloys.In addition,thermodynamic parameters such as partial excess Gibbs free energy change of Er in Ni,activity and apparent generation Gibbs free energy of the Ni-Er alloys were determined by the electromotive force method.Finally,different Ni-Er alloys were produced using potentiostatic electrolysis on the Ni cathode by controlling different potentials,Moreover,electrolytic extraction was carried out on the Ni cathode at the potential of-2.0 V,and the separation efficiency of Er reaches 99.72%,which proves the practicability of separating Er from LiCl-KCl eutectic on the reactive Ni cathode.展开更多
Transition metal phosphides(TMPs),with tunable electronic structures and diverse compositions,are promising candidates for electrocatalytic water splitting.However,their unsatisfactory electrical conductivity and tend...Transition metal phosphides(TMPs),with tunable electronic structures and diverse compositions,are promising candidates for electrocatalytic water splitting.However,their unsatisfactory electrical conductivity and tendency to aggregate during reactions result in structural instability,ultimately hindering further improvement of their electrocatalytic performance.To address these issues,a bamboo-leaf-like FeCoP/MXene heterojunction was synthesized by hydrothermal and thermal treatments,utilizing highly conductive MXene as the substrate.Density functional theory(DFT)calculations and experimental characterization reveal that strong Ti-O-Co/Fe covalent bond are formed between MXene and FeCoP through hybridization of O 2p and Co/Fe 3d orbitals,which enhance the structural stability of the interface and facilitate the effective anchoring of FeCoP on the MXene surface.Consequently,the structural stability and electrical conductivity of the catalyst are improved simultaneously.Additionally,interfacial charge redistribution optimizes the Gibbs free energy of hydrogen adsorption at the Co,Fe,and Ti sites while promoting the adsorption and activation of water molecules.These factors interact synergistically,leading to enhanced bi-functional electrocatalytic performance for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In a FeCoP/MXene(+‖-)two-electrode system,the catalyst achieves a current density of 10 mA cm^(-2)at a potential of 1.5 V,which is superior to the RuO_(2)(+)‖Pt/C(-)system.The assembled water splitting device exhibits long-term stability for up to 100 h at a current density of 100 mA cm^(-2).Furthermore,an anion exchange membrane water electrolyzer(AEMWE)equipped with FeCoP/MXene as both anode and cathode achieves an industrial-grade current density of 500 mA cm^(-2)at 1.83 V.These results highlight the critical role of interfacial engineering in enhancing the electrocatalytic performance of TMPs for water splitting and provide valuable insights for the design of novel bifunctional TMP catalysts.展开更多
Herein, the electrochemical behaviors of Sr on inert W electrode and reactive Zn/Al electrodes were systematically investig-ated in LiCl–KCl–SrCl2molten salts at 773 K using various electrochemical methods. The chem...Herein, the electrochemical behaviors of Sr on inert W electrode and reactive Zn/Al electrodes were systematically investig-ated in LiCl–KCl–SrCl2molten salts at 773 K using various electrochemical methods. The chemical reaction potentials of Li and Sr on re-active Zn/Al electrodes were determined. We observed that Sr could be extracted by decreasing the activity of the deposited metal Sr onthe reactive electrode, although the standard reduction potential of Sr(II)/Sr was more negative than that of Li(I)/Li. The electrochemicalextraction products of Sr on reactive Zn and Al electrodes were Zn13Sr and Al4Sr, respectively, with no codeposition of Li observed.Based on the density functional theory calculations, both Zn13Sr and Al4Sr were identified as stable intermetallic compounds with Zn-/Al-rich phases. In LiCl–KCl molten salt containing 3wt% SrCl2, the coulombic efficiency of Sr in the Zn electrode was ~54%. The depolar-ization values for Sr on Zn and Al electrodes were 0.864 and 0.485 V, respectively, exhibiting a stronger chemical interaction between Znand Sr than between Al and Sr. This study suggests that using reactive electrodes can facilitate extraction of Sr accumulated while elec-trorefining molten salts, thereby enabling the purification and reuse of the salt and decreasing the volume of the nuclear waste.展开更多
Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide resear...Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.展开更多
The work concerned the electrochemical behaviors of Y(Ⅲ)on W and Ni electrodes in molten LiCl-KCl salts by a series of electrochemical techniques.The electrochemical reaction of Y(Ⅲ)to Y(0)proceeded in a one-step re...The work concerned the electrochemical behaviors of Y(Ⅲ)on W and Ni electrodes in molten LiCl-KCl salts by a series of electrochemical techniques.The electrochemical reaction of Y(Ⅲ)to Y(0)proceeded in a one-step reduction process with the exchange of three electrons,Y(Ⅲ)+3e^–→Y(0).Compared with the cyclic voltammogram and square wave voltammogram obtained on W electrode,the reduction potential of Y(Ⅲ)on Ni electrode was observed at less negative potential than the one of Y(Ⅲ)to give pure Y metal on W electrode,which revealed the occurrence of underpotential deposition of Y(Ⅲ)on Ni electrode.Electromotive force(emf)measurements were performed to calculate the relative partial molar Gibbs energies and activities of Y in Y-Ni alloys.The standard Gibbs energies of formation for different Y-Ni intermetallic compounds were also estimated.The different Y-Ni alloys were formed by potentiostatic electrolysis at different potentials and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).It was found that four intermetallic compounds,YNi5,Y2Ni7,YNi3 and YNi2,were selectively produced by controlling applied potential.展开更多
An electrochemical approach for the preparation of Mg-Li-Y alloys via co-reduction of Mg, Li, and Y on a molybdenum electrode in LiCl-KCl-MgCl2-YCl3 melts at 943 K was investigated. Cyclic voltammograms (CVs) illumi...An electrochemical approach for the preparation of Mg-Li-Y alloys via co-reduction of Mg, Li, and Y on a molybdenum electrode in LiCl-KCl-MgCl2-YCl3 melts at 943 K was investigated. Cyclic voltammograms (CVs) illuminated that the underpotential deposition (UPD) of yttrium on pre-deposited magnesium led to the formation of a liquid Mg-Y alloy, and the succeeding underpotential deposition of lithium on pre-deposited Mg-Y led to the formation of a liquid Mg-Li-Y alloy. Chronopotentiometry measurements indicated that the order of electrode reactions was as follows: discharge of Mg(II) to Mg-metal, electroreduction of Y on the surface of Mg with formation of ε-Mg24+xY5 and after that the discharge of Li+ with the deposition of Mg-Li-Y alloys. X-ray diffraction (XRD) indicated that Mg-Li-Y alloys with different phases were formed via galvanostatic electrolysis. The microstructure of different phases of Mg-Li-Y alloys was characterized by optical microscope (OM) and scanning electron microscopy (SEM). The analysis results of inductively coupled plasma atomic emission spectrometer (ICP-AES) showed that the chemical compositions of Mg-Li-Y alloys corresponded with the phase structures of the XRD patterns, and the lithium and yttrium contents of Mg-Li-Y alloys depended on the concentrations of MgCl2 and YCl3 .展开更多
A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. U...A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8A10.2-xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8A10.2-xTixO2 cathode materials are 0.1,700℃, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8A10.2-xTixO2.展开更多
An electrochemical approach for the preparation of Mg-Li-Ce alloys by co-reduction of Mg, Li and Ce on a molybdenum electrode in KCl-LiCl-MgCl2-CeCl3 melts at 873 K was investigated. Cyclic voltammograms (CVs) and s...An electrochemical approach for the preparation of Mg-Li-Ce alloys by co-reduction of Mg, Li and Ce on a molybdenum electrode in KCl-LiCl-MgCl2-CeCl3 melts at 873 K was investigated. Cyclic voltammograms (CVs) and square wave voltammograms indicated that the underpotential deposition (UPD) of cerium on pre-deposited magnesium led to the formation of Mg-Ce alloys at electrode potentials around –1.87 V. The order of electrode reactions was as follows: discharge of Mg(II) to Mg-metal, UPD of Ce on the surface of pre-deposited Mg with formation of Mg-Ce alloys, discharge of Ce(III) to Ce-metal and after that the discharge of Li+ with the deposition of Mg-Li-Ce alloys, which was investigated by CVs, chronoamperometry, chronopotentiometry and open circuit chronopotentiometry. X-ray diffraction (XRD) illuminated that Mg-Li-Ce alloys with different phases were obtained via galvanostatic electrolysis by different current densities. The microstructures of Mg-Li-Ce alloys were characterized by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The analysis of energy dispersive spectrometry (EDS) showed that Ce existed at grain boundaries to restrain the grain growth. The compositions and the average grain sizes of Mg-Li-Ce alloys could be obtained controllably corresponding with the phase structures of the XRD patterns.展开更多
The development of lithium-sulfur batteries(LSBs)is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect.Herein,an N,O co-doped graphene layered...The development of lithium-sulfur batteries(LSBs)is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect.Herein,an N,O co-doped graphene layered block(NOGB)with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSB s.The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold,ensuring structural stability and high conductivity.The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption.Moreover,the micropores on the graphene sheets enable fast Li^+transport through the blocks.As a result,the obtained NOGB/S composite with 76 wt%sulfur content shows a high capacity of 1413 mAh g^-1 at 0.1 C,good rate performance of 433 mAh g^-1 at 10 C,and remarkable stability with 526 mAh g^-1 at after 1000 cycles at 1 C(average decay rate:0.038%per cycle).Our design provides a comprehensive route for simultaneously improving the conductivity,ion transport kinetics,and preventing the shuttle effect in LSBs.展开更多
Low larval survival,poor settlement,and abnormal metamorphosis are major problems in seed production of donkey-ear abalone Haliotis asinina.We examined the effects of chemical cues including epinephrine,nor-epinephrin...Low larval survival,poor settlement,and abnormal metamorphosis are major problems in seed production of donkey-ear abalone Haliotis asinina.We examined the effects of chemical cues including epinephrine,nor-epinephrine,and serotonin on larval survival,settlement,and metamorphosis in order to determine the possibility of using these chemicals to induce the problems.The results show that epinephrine could enhance metamorphosis rate at 10-6 mol/L only but higher concentrations(10-3-10-4 mol/L);and nor-epinephrine could inhibit the performance significantly,and serotonin could increase significantly the performance at a wide-range concentration(10-3-10-6 mol/L).Treatment with serotonin at 10-5 mol/L for 72 hours resulted in the highest settlement rate(42.2%) and survival rate(49.3%),while at 10-4 mol/L for 72 hours resulted in the highest metamorphosis rate(38.8%).Therefore,serotonin may be used as a fast metamorphosis inducer in abalone culture.展开更多
Conventionally,interface effects between polymers and fillers are essential for determining the breakdown strength and energy storage density of polymer-based dielectric composites.In this study,we found that interfac...Conventionally,interface effects between polymers and fillers are essential for determining the breakdown strength and energy storage density of polymer-based dielectric composites.In this study,we found that interface effects between different fillers have similar behavior.BN and Ba TiO3 fiber composite fillers with three different interface bonding strengths were successfully achieved by controlling composite processes(BT-fiber/BN<BT-fiber@BN<BT-fiber&BN),and introduced into a polyimide(PI)matrix to form composite films.Considerably enhanced breakdown strength and energy storage density were obtained in BT-fiber&BN/PI composites owing to strong interface bonding,compared to other two composite fillers,which are well supported by the data from the finite element simulation.Specifically,PI composites with only 3 wt%BT-fiber&BN possess an optimized energy storage density of approximately 4.25 J/cm^(3)at 4343 k V/cm.These results provide an effective way for adjusting and improving the energy storage properties of polymer-based composites.展开更多
A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according t...A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.展开更多
Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes,including Al,Ni,Cu,and liquid Zn,and the electrochemical behaviors of the resultant metal products were investigated using dif...Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes,including Al,Ni,Cu,and liquid Zn,and the electrochemical behaviors of the resultant metal products were investigated using different electrochemical techniques.While Sm metal deposition via the conventional two-step reaction process was not noted on the inert electrode,underpotential deposition was observed on the reactive electrodes because of the latter's depolarization effect.The depolarization effects of the reactive electrodes on Sm showed the order Zn>Al>Ni>Cu.Sm-M(M=Al,Ni,Cu,Zn)alloys were deposited by galvanostatic and potentiostatic electrolysis.The products were fully characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM)-energy dispersive spectrometry(EDS),and the stability of the obtained M-rich compounds was determined.Finally,the relationship between the electrode potential and type of Sm-M intermetallic compounds formed was assessed on the basis of the observed electrochemical properties and electrodeposits.展开更多
The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investiga...The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG) measurements, X-ray diffraction (XRD), scanning electronic microscope (SEM), cyclic voltammetry (CV), and charge-discharge test. XRD data shows that all the samples exhibit the same pure spinel phase, and the LiLa0.01Mn1.99O3.99F0.01 and LiLao.olMnl.9904 samples have smaller lattice parameters and unit cell volume than LiMn2O4. SEM indicates that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 129.9, 122.8, and 126.4 mAh·g^-1, and the capacity losses of the initial values after 50 cycles are 14.5%, 7.6%, and 8.0%, respectively The CVs show that the La and F dual-doped spinel displays a better reversibility than LiMn2O4.展开更多
The electrochemical behaviour of Al, Li, and Er were investigated by electrochemical techniques, such as cyclic voltammograms, chronopotentiometric, chronoamperograms, and open circuit chronopotentiogram on molybdenum...The electrochemical behaviour of Al, Li, and Er were investigated by electrochemical techniques, such as cyclic voltammograms, chronopotentiometric, chronoamperograms, and open circuit chronopotentiogram on molybdenum electrodes. The results showed that the underpotential deposition of erbium on pre-deposited Al electrodes formed two Al-Er intermetallic compounds. The codeposition of Al, Li, Er occurred and formed Al-Li-Er alloys in LiCl-KCl-AlCl3 -Er2O3 melts at 773K. Different phases such as Al2Er, Al2Er3 and βLi phase of Al-Li-Er alloys were prepared by galvanostatic electrolysis and characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) indicated that Er element mainly distributed at the grain boundary. ICP analyses showed that lithium and erbium contents of Al-Li-Er alloys could be controlled by AlCl3 and Er2O3 concentration and electrochemical parameters.展开更多
The electrochemical co-reduction of Ho(Ⅲ)and Mg(Ⅱ)ions was investigated on Mo electrode in eutectic LiCl–KCl salts at temperature of 773 K using various electrochemical techniques.Cyclic voltammogram(CV)and square ...The electrochemical co-reduction of Ho(Ⅲ)and Mg(Ⅱ)ions was investigated on Mo electrode in eutectic LiCl–KCl salts at temperature of 773 K using various electrochemical techniques.Cyclic voltammogram(CV)and square wave voltammogram exhibit three reduction peaks corresponding to the reduction of Ho(Ⅲ)on pre-deposited Mg electrode,whose potentials are more positive than that of Ho on Mo electrode because of the formation of Mg-Ho intermetallic compounds by co-reduction of Ho(Ⅲ)and Mg(Ⅱ)ions.Meanwhile,chronopotentiometry and open-circuit chronopotentiometry were used to explore the electrochemical formation of Mg–Ho intermetallics.Mg–Ho alloys were produced by galvanostatic electrolysis at the current of 1.5 A for different electrolysis durations.Ho_(5)Mg_(24),HoMg_(2) and HoMg intermetallic compounds were acquired and characterized by X-ray diffraction(XRD)and scanning electron microscopy(SEM)coupled with energy-dispersive spectroscopy(EDS).The results indicate that Mg–Ho intermetallic compounds,Ho_(5)Mg_(24),HoMg_(2) and HoMg,could be prepared by molten salts electrolysis.展开更多
In this work,a technique was proposed to prepare UO_(2)from UO_(3)by the two processes of fluorination reaction of UO_(3)with NH_(4)HF_(2)and electrochemical reduction of UO_(2)^(2+)for the recycle uranium.The feasibi...In this work,a technique was proposed to prepare UO_(2)from UO_(3)by the two processes of fluorination reaction of UO_(3)with NH_(4)HF_(2)and electrochemical reduction of UO_(2)^(2+)for the recycle uranium.The feasibility of fluorination reaction was firstly confirmed using thermodynamic calculation;then,the products were analyzed using XRD,Raman and fluorescence to be UO_(2)F_(2).The fluorination mechanism was inferred to be UO_(3)(s)+NH_(4)HF_(2)→(NH_(4))_(3)UO_(2)F_(5)→NH_(4)(UO_(2))_(2)F_(5)→UO_(2)F_(2).The redox behavior of UO_(2)^(2+)on W electrode was investigated by cyclic voltammetry and square wave voltammetry,which indicated that UO_(2)^(2+) was reduced to UO_(2)via a two-step single electron transfer with diffusion-controlled.The diffusion coefficient of UO_(2)^(2+) was calculated to be 6.22×10^(-5)cm/s.The disproportionation reaction of UO_(2)^(+) was observed,and the relationship between the disproportionation reaction and scan rate was discussed.Moreover,the electrochemical fabrication of UO_(2) was conducted by electrolysis at-0.8 V,and the product was analyzed by XRD,SEM and EDS to be UO_(2).ICP-AES results showed that the extraction efficiency of UO_(2) could reach 98.53%.展开更多
文摘Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.
文摘A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744.
文摘Artificial photosynthesis of hydrogen peroxide(H_(2)O_(2))using covalent organic frameworks(COFs)as photocatalysts holds promise for future applications.However,the influence of linkage chemistry on the photoelectrochemical properties and photocatalytic performance of COFs remains a significant challenge.Herein,we designed and synthesized a model system with different linkages,including imine-,amine-,azo-linked COFs,then investigated their photocatalytic activity of overall H_(2)O_(2)production.The photocatalytic results revealed varying activities for H_(2)O_(2)synthesis among these COFs,with the azo-linked TTA-Azo-COF(COF synthesized by 4,4’,4’’-(1,3,5-triazine-2,4,6-triyl)-trianiline and terephthalaldehyde)demonstrating the highest overall H2O2 photosynthesis activity of 2516μmol g^(–1)h^(–1)in an O2 atmosphere without any sacrificial agents,which is 6.72 and 2.85 times higher than that of imine-linked TTA-COF and amine-linked TTA-COF-AR,respectively.Furthermore,TTA-Azo-COF maintained a high photosynthesis H2O2 activity of 2116μmol g^(–1)h^(–1)under an air atmosphere,outperforming most COF-based photocatalytic systems under similar reaction conditions.Further characterizations and density functional theory calculations reveal these various linkages in different COFs result in distinct visible-light absorption,charge transfer capacities and formation energy barriers of key intermediates.This work revealed the significant impact of linkages on COFs and provided comprehensive guidance for the rational design of COFs with tailored linkages to fulfill specific requirements for future applications.
基金Project supported by Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072023GIP1005)。
文摘For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and on reactive(Ni)electrodes.On the inert Mo electrode,the reduction of Er(Ⅲ)to Er(0)is a onestep with three-electron and quasi-reversible reaction process.Meanwhile,the apparent generation Gibbs free energy and activity coefficients of Er(Ⅲ)on the inert electrode were determined.Thereafter,the electrochemical reduction of Er(Ⅲ)on the Ni electrode was emphatically investigated.Er(Ⅲ)is reduced at a corrected potential owing to the formation of Ni-Er alloys.In addition,thermodynamic parameters such as partial excess Gibbs free energy change of Er in Ni,activity and apparent generation Gibbs free energy of the Ni-Er alloys were determined by the electromotive force method.Finally,different Ni-Er alloys were produced using potentiostatic electrolysis on the Ni cathode by controlling different potentials,Moreover,electrolytic extraction was carried out on the Ni cathode at the potential of-2.0 V,and the separation efficiency of Er reaches 99.72%,which proves the practicability of separating Er from LiCl-KCl eutectic on the reactive Ni cathode.
基金financially supported by the National Natural Science Foundation of China(No.22279030)the Natural Science Fund for Distinguished Young Scholars of Heilongjiang Province(No.JQ2024B003)+1 种基金Fundamental Research Funds for the Undergraduate Universities of Heilongjiang Province(No.2024-KYYWF-0122)the Project of Key Laboratory of Superlight Materials and Surface Technology of Harbin Engineering University
文摘Transition metal phosphides(TMPs),with tunable electronic structures and diverse compositions,are promising candidates for electrocatalytic water splitting.However,their unsatisfactory electrical conductivity and tendency to aggregate during reactions result in structural instability,ultimately hindering further improvement of their electrocatalytic performance.To address these issues,a bamboo-leaf-like FeCoP/MXene heterojunction was synthesized by hydrothermal and thermal treatments,utilizing highly conductive MXene as the substrate.Density functional theory(DFT)calculations and experimental characterization reveal that strong Ti-O-Co/Fe covalent bond are formed between MXene and FeCoP through hybridization of O 2p and Co/Fe 3d orbitals,which enhance the structural stability of the interface and facilitate the effective anchoring of FeCoP on the MXene surface.Consequently,the structural stability and electrical conductivity of the catalyst are improved simultaneously.Additionally,interfacial charge redistribution optimizes the Gibbs free energy of hydrogen adsorption at the Co,Fe,and Ti sites while promoting the adsorption and activation of water molecules.These factors interact synergistically,leading to enhanced bi-functional electrocatalytic performance for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In a FeCoP/MXene(+‖-)two-electrode system,the catalyst achieves a current density of 10 mA cm^(-2)at a potential of 1.5 V,which is superior to the RuO_(2)(+)‖Pt/C(-)system.The assembled water splitting device exhibits long-term stability for up to 100 h at a current density of 100 mA cm^(-2).Furthermore,an anion exchange membrane water electrolyzer(AEMWE)equipped with FeCoP/MXene as both anode and cathode achieves an industrial-grade current density of 500 mA cm^(-2)at 1.83 V.These results highlight the critical role of interfacial engineering in enhancing the electrocatalytic performance of TMPs for water splitting and provide valuable insights for the design of novel bifunctional TMP catalysts.
基金financially supported by the National Postdoctoral Program for Innovative Talents, China (No. BX2021327)the National Natural Science Foundation of China (Nos. 22206194 and U2267222)+1 种基金the Ningbo Natural Science Foundation of China (No. 2023J337)the Yongjiang Talent Introduction Programme, China (No. 2 021A-161-G)。
文摘Herein, the electrochemical behaviors of Sr on inert W electrode and reactive Zn/Al electrodes were systematically investig-ated in LiCl–KCl–SrCl2molten salts at 773 K using various electrochemical methods. The chemical reaction potentials of Li and Sr on re-active Zn/Al electrodes were determined. We observed that Sr could be extracted by decreasing the activity of the deposited metal Sr onthe reactive electrode, although the standard reduction potential of Sr(II)/Sr was more negative than that of Li(I)/Li. The electrochemicalextraction products of Sr on reactive Zn and Al electrodes were Zn13Sr and Al4Sr, respectively, with no codeposition of Li observed.Based on the density functional theory calculations, both Zn13Sr and Al4Sr were identified as stable intermetallic compounds with Zn-/Al-rich phases. In LiCl–KCl molten salt containing 3wt% SrCl2, the coulombic efficiency of Sr in the Zn electrode was ~54%. The depolar-ization values for Sr on Zn and Al electrodes were 0.864 and 0.485 V, respectively, exhibiting a stronger chemical interaction between Znand Sr than between Al and Sr. This study suggests that using reactive electrodes can facilitate extraction of Sr accumulated while elec-trorefining molten salts, thereby enabling the purification and reuse of the salt and decreasing the volume of the nuclear waste.
基金This publication was made possible by funding from the NIMHD-RCMI Grant no. 5G12MD007595, the National Institute of Minority Health, Health Disparities, and the NIGMS-BUILD Grant no. 8UL1GM118967, and the National Science Foundation (Grant no. 1700429). This publication was also made possible by the Louisiana Cancer Research Consortium. The contents axe solely the responsibility of the authors and do not necessarily represent the official views of the NIMHD. The authors appreciate the support of Nanhu Scholars Program for Young Scholars of Xinyang Normal University and the Science and Technology Development Plan (No. J17KA006) from Shandong Provincial Education Department as well. Z.H., K.L and D.H. axe equally contributed to this work.
文摘Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.
基金Project supported by the National Natural Science Foundation of China(21271054,11575047,21173060,11675044)the Major Research Plan of the National Natural Science Foundation of China(91326113,91226201)the Fundamental Research Funds for the Central Universities(HEUCF2016012)
文摘The work concerned the electrochemical behaviors of Y(Ⅲ)on W and Ni electrodes in molten LiCl-KCl salts by a series of electrochemical techniques.The electrochemical reaction of Y(Ⅲ)to Y(0)proceeded in a one-step reduction process with the exchange of three electrons,Y(Ⅲ)+3e^–→Y(0).Compared with the cyclic voltammogram and square wave voltammogram obtained on W electrode,the reduction potential of Y(Ⅲ)on Ni electrode was observed at less negative potential than the one of Y(Ⅲ)to give pure Y metal on W electrode,which revealed the occurrence of underpotential deposition of Y(Ⅲ)on Ni electrode.Electromotive force(emf)measurements were performed to calculate the relative partial molar Gibbs energies and activities of Y in Y-Ni alloys.The standard Gibbs energies of formation for different Y-Ni intermetallic compounds were also estimated.The different Y-Ni alloys were formed by potentiostatic electrolysis at different potentials and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometry(EDS).It was found that four intermetallic compounds,YNi5,Y2Ni7,YNi3 and YNi2,were selectively produced by controlling applied potential.
基金Project supported by the National 863 Project of the Ministry of Science and Technology of China (2011AA03A409)National Natural Science Foundation of China (21103033, 21101040 and 91226201)+3 种基金the Fundamental Research Funds for the Central Universities (HEUCF201210002)the Basic Research Foundation of Harbin Engineering University of China (HEUFT08030)the Heilongjiang Postdoctoral Fund (LBH-Z10196 and LBH-Z10207)the China Postdoctoral Science Foundation (20100480974)
文摘An electrochemical approach for the preparation of Mg-Li-Y alloys via co-reduction of Mg, Li, and Y on a molybdenum electrode in LiCl-KCl-MgCl2-YCl3 melts at 943 K was investigated. Cyclic voltammograms (CVs) illuminated that the underpotential deposition (UPD) of yttrium on pre-deposited magnesium led to the formation of a liquid Mg-Y alloy, and the succeeding underpotential deposition of lithium on pre-deposited Mg-Y led to the formation of a liquid Mg-Li-Y alloy. Chronopotentiometry measurements indicated that the order of electrode reactions was as follows: discharge of Mg(II) to Mg-metal, electroreduction of Y on the surface of Mg with formation of ε-Mg24+xY5 and after that the discharge of Li+ with the deposition of Mg-Li-Y alloys. X-ray diffraction (XRD) indicated that Mg-Li-Y alloys with different phases were formed via galvanostatic electrolysis. The microstructure of different phases of Mg-Li-Y alloys was characterized by optical microscope (OM) and scanning electron microscopy (SEM). The analysis results of inductively coupled plasma atomic emission spectrometer (ICP-AES) showed that the chemical compositions of Mg-Li-Y alloys corresponded with the phase structures of the XRD patterns, and the lithium and yttrium contents of Mg-Li-Y alloys depended on the concentrations of MgCl2 and YCl3 .
文摘A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8A10.2-xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8A10.2-xTixO2 cathode materials are 0.1,700℃, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8A10.2-xTixO2.
基金supported by National 863 Project of the Ministry of Science and Technology of China(2011AA03A409)National Natural Science Foundation of China(51104050,91226201,21271054,21173060,21076049)+5 种基金Heilongjiang Postdoctoral Fund(LBH-Z10208)Heilongjiang Educational Commission Foundation(12513045)China Postdoctoral Science Foundation(20110491029)the Fundamental Research Funds for the Central Universities(HEUCF131502)the financial support from the Scientific Technology Bureau of Harbin(2012RFQXS102)the Basic Research Foundation of Harbin Engineering University(HEUFT08031)
文摘An electrochemical approach for the preparation of Mg-Li-Ce alloys by co-reduction of Mg, Li and Ce on a molybdenum electrode in KCl-LiCl-MgCl2-CeCl3 melts at 873 K was investigated. Cyclic voltammograms (CVs) and square wave voltammograms indicated that the underpotential deposition (UPD) of cerium on pre-deposited magnesium led to the formation of Mg-Ce alloys at electrode potentials around –1.87 V. The order of electrode reactions was as follows: discharge of Mg(II) to Mg-metal, UPD of Ce on the surface of pre-deposited Mg with formation of Mg-Ce alloys, discharge of Ce(III) to Ce-metal and after that the discharge of Li+ with the deposition of Mg-Li-Ce alloys, which was investigated by CVs, chronoamperometry, chronopotentiometry and open circuit chronopotentiometry. X-ray diffraction (XRD) illuminated that Mg-Li-Ce alloys with different phases were obtained via galvanostatic electrolysis by different current densities. The microstructures of Mg-Li-Ce alloys were characterized by optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The analysis of energy dispersive spectrometry (EDS) showed that Ce existed at grain boundaries to restrain the grain growth. The compositions and the average grain sizes of Mg-Li-Ce alloys could be obtained controllably corresponding with the phase structures of the XRD patterns.
基金supported by the National Natural Science Foundation of China(Nos.51672055,51972342,51872656,and 51702275)the Taishan Scholar Project of Shandong Province(ts20190922)+3 种基金the Key Basic Research Project of Natural Science Foundation of Shandong Province(ZR2019ZD51)the Xinjiang Tianshan Xuesong Project(2018XS28)the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2017S003)the Xinjiang Tianchi Doctoral Project。
文摘The development of lithium-sulfur batteries(LSBs)is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect.Herein,an N,O co-doped graphene layered block(NOGB)with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSB s.The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold,ensuring structural stability and high conductivity.The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption.Moreover,the micropores on the graphene sheets enable fast Li^+transport through the blocks.As a result,the obtained NOGB/S composite with 76 wt%sulfur content shows a high capacity of 1413 mAh g^-1 at 0.1 C,good rate performance of 433 mAh g^-1 at 10 C,and remarkable stability with 526 mAh g^-1 at after 1000 cycles at 1 C(average decay rate:0.038%per cycle).Our design provides a comprehensive route for simultaneously improving the conductivity,ion transport kinetics,and preventing the shuttle effect in LSBs.
基金Support by the Key Scientific and Technological Project of Hainan Province (No. 080137)the Key Project of University (No. hd09×m10)
文摘Low larval survival,poor settlement,and abnormal metamorphosis are major problems in seed production of donkey-ear abalone Haliotis asinina.We examined the effects of chemical cues including epinephrine,nor-epinephrine,and serotonin on larval survival,settlement,and metamorphosis in order to determine the possibility of using these chemicals to induce the problems.The results show that epinephrine could enhance metamorphosis rate at 10-6 mol/L only but higher concentrations(10-3-10-4 mol/L);and nor-epinephrine could inhibit the performance significantly,and serotonin could increase significantly the performance at a wide-range concentration(10-3-10-6 mol/L).Treatment with serotonin at 10-5 mol/L for 72 hours resulted in the highest settlement rate(42.2%) and survival rate(49.3%),while at 10-4 mol/L for 72 hours resulted in the highest metamorphosis rate(38.8%).Therefore,serotonin may be used as a fast metamorphosis inducer in abalone culture.
基金the Natural Science Foundation of China(No.51462028)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A10,NJYT-17-B09)。
文摘Conventionally,interface effects between polymers and fillers are essential for determining the breakdown strength and energy storage density of polymer-based dielectric composites.In this study,we found that interface effects between different fillers have similar behavior.BN and Ba TiO3 fiber composite fillers with three different interface bonding strengths were successfully achieved by controlling composite processes(BT-fiber/BN<BT-fiber@BN<BT-fiber&BN),and introduced into a polyimide(PI)matrix to form composite films.Considerably enhanced breakdown strength and energy storage density were obtained in BT-fiber&BN/PI composites owing to strong interface bonding,compared to other two composite fillers,which are well supported by the data from the finite element simulation.Specifically,PI composites with only 3 wt%BT-fiber&BN possess an optimized energy storage density of approximately 4.25 J/cm^(3)at 4343 k V/cm.These results provide an effective way for adjusting and improving the energy storage properties of polymer-based composites.
基金Project supported by the National Natural Science Foundation of China (20471012), Foundation for the Author of National Excellent Doctoral Dissertation of China (200322), Research Fund for the Doctoral Program of Higher Education (20040141004) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.
基金the National Natural Science Foundation of China(Nos.21976047,21790373,and 51774104)the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072019GIP1011)the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1008)。
文摘Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes,including Al,Ni,Cu,and liquid Zn,and the electrochemical behaviors of the resultant metal products were investigated using different electrochemical techniques.While Sm metal deposition via the conventional two-step reaction process was not noted on the inert electrode,underpotential deposition was observed on the reactive electrodes because of the latter's depolarization effect.The depolarization effects of the reactive electrodes on Sm showed the order Zn>Al>Ni>Cu.Sm-M(M=Al,Ni,Cu,Zn)alloys were deposited by galvanostatic and potentiostatic electrolysis.The products were fully characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM)-energy dispersive spectrometry(EDS),and the stability of the obtained M-rich compounds was determined.Finally,the relationship between the electrode potential and type of Sm-M intermetallic compounds formed was assessed on the basis of the observed electrochemical properties and electrodeposits.
文摘The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides.were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG) measurements, X-ray diffraction (XRD), scanning electronic microscope (SEM), cyclic voltammetry (CV), and charge-discharge test. XRD data shows that all the samples exhibit the same pure spinel phase, and the LiLa0.01Mn1.99O3.99F0.01 and LiLao.olMnl.9904 samples have smaller lattice parameters and unit cell volume than LiMn2O4. SEM indicates that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 129.9, 122.8, and 126.4 mAh·g^-1, and the capacity losses of the initial values after 50 cycles are 14.5%, 7.6%, and 8.0%, respectively The CVs show that the La and F dual-doped spinel displays a better reversibility than LiMn2O4.
基金Project supported by the National 863 Project of the Ministry of Science and Technology of China(2009AA050702,2011AA03A409)National Natural Science Foundation of China(21173060)
文摘The electrochemical behaviour of Al, Li, and Er were investigated by electrochemical techniques, such as cyclic voltammograms, chronopotentiometric, chronoamperograms, and open circuit chronopotentiogram on molybdenum electrodes. The results showed that the underpotential deposition of erbium on pre-deposited Al electrodes formed two Al-Er intermetallic compounds. The codeposition of Al, Li, Er occurred and formed Al-Li-Er alloys in LiCl-KCl-AlCl3 -Er2O3 melts at 773K. Different phases such as Al2Er, Al2Er3 and βLi phase of Al-Li-Er alloys were prepared by galvanostatic electrolysis and characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) indicated that Er element mainly distributed at the grain boundary. ICP analyses showed that lithium and erbium contents of Al-Li-Er alloys could be controlled by AlCl3 and Er2O3 concentration and electrochemical parameters.
基金the National Natural Science Foundation of China(Nos.11575047,11675044,21790373,21876034 and 11875116)the Major Research Plan of the National Natural Science Foundation of China(Nos.91326113 and 91226201)the Fundamental Research Funds for the Central Universities(No.HEUCF201849)。
文摘The electrochemical co-reduction of Ho(Ⅲ)and Mg(Ⅱ)ions was investigated on Mo electrode in eutectic LiCl–KCl salts at temperature of 773 K using various electrochemical techniques.Cyclic voltammogram(CV)and square wave voltammogram exhibit three reduction peaks corresponding to the reduction of Ho(Ⅲ)on pre-deposited Mg electrode,whose potentials are more positive than that of Ho on Mo electrode because of the formation of Mg-Ho intermetallic compounds by co-reduction of Ho(Ⅲ)and Mg(Ⅱ)ions.Meanwhile,chronopotentiometry and open-circuit chronopotentiometry were used to explore the electrochemical formation of Mg–Ho intermetallics.Mg–Ho alloys were produced by galvanostatic electrolysis at the current of 1.5 A for different electrolysis durations.Ho_(5)Mg_(24),HoMg_(2) and HoMg intermetallic compounds were acquired and characterized by X-ray diffraction(XRD)and scanning electron microscopy(SEM)coupled with energy-dispersive spectroscopy(EDS).The results indicate that Mg–Ho intermetallic compounds,Ho_(5)Mg_(24),HoMg_(2) and HoMg,could be prepared by molten salts electrolysis.
基金financially supported by the National Natural Science foundation of China(Nos.U2167215,22076035,21876034,11875116 and 21790373)the Fundamental Research Funds for the Central Universities(No.3072021CFJ1001)。
文摘In this work,a technique was proposed to prepare UO_(2)from UO_(3)by the two processes of fluorination reaction of UO_(3)with NH_(4)HF_(2)and electrochemical reduction of UO_(2)^(2+)for the recycle uranium.The feasibility of fluorination reaction was firstly confirmed using thermodynamic calculation;then,the products were analyzed using XRD,Raman and fluorescence to be UO_(2)F_(2).The fluorination mechanism was inferred to be UO_(3)(s)+NH_(4)HF_(2)→(NH_(4))_(3)UO_(2)F_(5)→NH_(4)(UO_(2))_(2)F_(5)→UO_(2)F_(2).The redox behavior of UO_(2)^(2+)on W electrode was investigated by cyclic voltammetry and square wave voltammetry,which indicated that UO_(2)^(2+) was reduced to UO_(2)via a two-step single electron transfer with diffusion-controlled.The diffusion coefficient of UO_(2)^(2+) was calculated to be 6.22×10^(-5)cm/s.The disproportionation reaction of UO_(2)^(+) was observed,and the relationship between the disproportionation reaction and scan rate was discussed.Moreover,the electrochemical fabrication of UO_(2) was conducted by electrolysis at-0.8 V,and the product was analyzed by XRD,SEM and EDS to be UO_(2).ICP-AES results showed that the extraction efficiency of UO_(2) could reach 98.53%.