To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrate...To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrated grid-following control mode,allowing smooth switching between GFL and GFM modes.First,impedance models of GFL and GFM PV energy storage VSG systems were established,and grid stability was analyzed.Second,an online impedance identification method based on voltage fluctuation data screening was proposed to enhance the accuracy of impedance identification.Additionally,a PV energy storage GFM/GFL VSG smooth switching method based on current inner loop compensation was introduced to achieve stable grid-connected operation of distributed photovoltaics under changes in strong and weak power grids.Finally,a grid stability analysis was conducted on the multi-machine parallel PV ESS,and a simulation model of a multi-machine parallel PV ESS based on current inner loop compensation was established for testing.Results showed that,compared to using a single GFM or single GFL control for the PV VSG system,the smooth switching method of multi-machine parallel PV ESS effectively suppresses system resonance under variations in power grid strength,enabling adaptive and stable grid-connected operations of distributed PV.展开更多
In recent years, with the development of technologies such as the Internet of Things(Io T), big data and cloud computing, digital twin technology has gradually been applied in marine research. The digital twin realize...In recent years, with the development of technologies such as the Internet of Things(Io T), big data and cloud computing, digital twin technology has gradually been applied in marine research. The digital twin realizes real-time monitoring, analysis and optimization of the state and behavior of a physical object or system by creating a virtual model. Research shows that digital twin technology has extensive application potential in ship design, marine resource development, marine equipment engineering design and optimization, marine ecological protection and early warning of disasters. Although digital twin technology has great potential in marine research, it also faces many challenges, including the complexity of data acquisition and processing, the accuracy and real-time performance of model construction, and the need for multidisciplinary cross-integration. An in-depth analysis of the technical bottlenecks and future development directions will provide an important reference for subsequent research and promote the further application and development of digital twin technology in marine research.展开更多
The impact of spinal cord injury(SCI)on the immune system is increasingly recognized in a field traditionally focused on motor impairments.SCI can seriously affect the immune system by progressively disrupting the reg...The impact of spinal cord injury(SCI)on the immune system is increasingly recognized in a field traditionally focused on motor impairments.SCI can seriously affect the immune system by progressively disrupting the regulatory mechanisms that control immune responses.This dysregulation varies widely among patients and can evolve over time,ranging from systemic inflammatory responses to immunosuppression,greatly contributing to the morbidity and mortality of individuals with SCI(Bao et al.,2011;Brennan et al.,2024).展开更多
Challenges in the prevention and treatment of mild cognitive impairment associated with Alzheimer's disease:Increased life expectancy due to advancements in medical care has given rise to an aging population,accom...Challenges in the prevention and treatment of mild cognitive impairment associated with Alzheimer's disease:Increased life expectancy due to advancements in medical care has given rise to an aging population,accompanied by a surge in the incidence of incurable neurodegenerative diseases(NDDs).These diseases primarily affect the cognitive and behavioral functions of older adults by impacting brain activity.Mild cognitive impairment(MCI)is a neurodegenerative condition that affects a significant portion of the population.展开更多
Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and of...Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.展开更多
AIM: To provide a comprehensive overview of clinical studies on the clinical picture of Internet-use related addictions from a holistic perspective. A literature search was conducted using the database Web of Science....AIM: To provide a comprehensive overview of clinical studies on the clinical picture of Internet-use related addictions from a holistic perspective. A literature search was conducted using the database Web of Science.METHODS: Over the last 15 years, the number of Internet users has increased by 1000%, and at the same time, research on addictive Internet use has proliferated. Internet addiction has not yet been understood very well, and research on its etiology and natural history is still in its infancy. In 2013, the American Psychiatric Association included Internet Gaming Disorder in the appendix of the updated version of the Diagnostic and Statistical Manual for Mental Disorders(DSM-5) as condition that requires further research prior to official inclusion in the main manual, with important repercussions for research and treatment. To date, reviews have focused on clinical and treatment studies of Internet addiction and Internet Gaming Disorder. This arguably limits the analysis to a specific diagnosis of a potential disorder that has not yet been officially recognised in the Western world, rather than a comprehensive and inclusive investigation of Internet-use related addictions(including problematic Internet use) more generally. RESULTS: The systematic literature review identified a total of 46 relevant studies. The included studies used clinical samples, and focused on characteristics of treatment seekers and online addiction treatment. Four main types of clinical research studies were identified, namely research involving(1) treatment seeker characteristics;(2) psychopharmacotherapy;(3) psychological therapy; and(4) combined treatment. CONCLUSION: A consensus regarding diagnostic criteria and measures is needed to improve reliability across studies and to develop effective and efficient treatment approaches for treatment seekers.展开更多
The Arctic is one of the most sensitive regions that respond through feedback to global climate changes. Climatic, hydrological and ecological changes in the Arctic are clear evidence of global warming. In 2012 and 20...The Arctic is one of the most sensitive regions that respond through feedback to global climate changes. Climatic, hydrological and ecological changes in the Arctic are clear evidence of global warming. In 2012 and 2014, the 5th and 6th Chinese National Arctic Research Expeditions undertook studies in the Bering Sea, the Arctic Ocean (including the Chukchi Sea), and the Norwegian Sea. These studies provided us with a better understanding of the marine biology and ecology in the Arctic and subarctic regions, particularly in the Pacific Arctic sector. Rapid changes observed in the Arctic environment include the shrinking of cold-water masses in the Bering Sea in the summer, and elevated water temperatures promoting phytoplankton blooms, leading to an increase in phytoplankton transferred to higher trophic levels. As a result, the transfer efficiency of organic matter toward the bottom weakened, leading to a reduction in benthic biomass. This is consistent with expectations that the overall carbon and energy flux will ultimately switch from the dominant mode of sea ice-algae-benthos to one of phytoplankton-zooplankton. Influenced by Pacific water inflow, fluvial runoff and melting sea ice, the Chukchi Sea exhibited different responses to various environmental changes. Interactions between water masses led to other interannual ecological shifts. With the increase in sea ice melt and sunlight in the central region of the Arctic Ocean, the relative abundance of heterotrophic bacteria is expected to increase, and play a vital role in the Arctic microbial loop.展开更多
Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simu...Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simulators to test of solar radiation measuring instrument,so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer,it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench,which achieves different detection of solar radiation. After practical test,solar irradiation is within Φ60 mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%;rotating angle precision is better than 0.09°. Then,solar simulator is used to carry out pyranometer sensitivity test,pyranometer directional response test,pyranometer tilt response test and non-linearity test for radiation instruments. Test results showthat the solar simulator meets the testing requirements of solar radiation measuring instruments.展开更多
To alleviate the restriction of shortages of labor force and technology on agricultural development in China, the technology of crop transplanting in well cellar was proposed. This technology was that the holes for tr...To alleviate the restriction of shortages of labor force and technology on agricultural development in China, the technology of crop transplanting in well cellar was proposed. This technology was that the holes for transplanting in well cellar were made with dedicated tools for making well cellar, and the seedlings were placed into the well cellar vertically during transplanting. This new technology integrates heat preservation, management of rising temperature, early transplanting and deep planting. Results showed that the technology of transplanting in well cellar improved the growing environment of crops after transplanting through elevation of temperature and heat preservation, and tempered the dramatic change in the temperatures encountered by transplanted seedlings. This technology significantly reduced labor force requirement by 98.06%, 58.96% and 64.44% in tobacco, maize and pepper, respectively. Transplanting in well cellar without mulching film further lowered the labor force requirement, with decrease by 121.77% and 115.40% in maize and pepper, respectively. In addition, this technology significantly promoted crop growth, reduced the time until marketing for maize and pepper by 11 d and 6 d, respectively, and increased economic benefits by 67.03% and 44.24%, respectively. Thus, the technology of transplanting in well cellar showed strong promise for improving upon existing technologies to provide greater economic returns, particularly in areas where labor force shortage threatens to hamper agricultural production.展开更多
The unified dynamic theory reveals the substrate-based nonlinear growth phenomena. It means that the environment of high organism concentration and low substrate state is useful for the growth of weak floras. With eco...The unified dynamic theory reveals the substrate-based nonlinear growth phenomena. It means that the environment of high organism concentration and low substrate state is useful for the growth of weak floras. With ecological superior nitrification denltrification ( ECOSUNIDE ) technology, high sludge concentration by distributing influent to anaerobic and anoxic zones is carried out, and the ecological superiorities of nitrifiers, denitrifiers, and phosphate accumulating organisms (PAOs) get to be promoted. One of the anaerobic/anoxic/oxic(A/A/O) treatment lines of a sewage treatment plant with ECOSUNIDE technology for further investigation on the nutrient removal efficiency is reformed. The advantages of ECOSUNIDE, such as high efficiency and saving energy, are well demonstrated, even under the condition of low temperature (about 15℃) and carbon-resource (C/N ratio lower than 2. 5 ). In ECOSUNIDE system, the effluent indexes as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and NH3--N reach the Class I-A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB18918-2002 ), and suspended substance ( SS ), total nitrogen (TN), and total phosphorus(TP) meet the Class I -B criteria. While the effluent qualities of A/A/O system only reach the secondary discharge standard. Through the comparison on the sludge character of ECOSUNH)E system with A/A/O, more abundant biofacies, darker and more intense zoogloea, more obvious filamentous bacterium, and clearer floes edges in ECOSUNIDE system are found.展开更多
In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing...In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.展开更多
[Objectives]The use of natural enemies of living insects and their derivatives can effectively avoid the problems of pesticide residues,pest resistance,biodiversity decline,control effect weakening and so on.[Methods]...[Objectives]The use of natural enemies of living insects and their derivatives can effectively avoid the problems of pesticide residues,pest resistance,biodiversity decline,control effect weakening and so on.[Methods]Parasites inject various parasitic factors into hosts to inhibit the development of hosts,adjust the immunity of hosts,interfere with the growth and development of hosts,and reduce the nutrition metabolism of hosts,so as to ensure the growth and development of the offspring.Host pests can escape or conquer the parasitism of parasitic wasps through immune defense system in order to reproduce their own offspring.[Results]Under intense and strong selection pressure,in order to effectively ensure the success rate of parasitism,the adaptive diversity of parasitism strategies of parasitic wasps is finally caused.In the process of evolution and under the pressure of directional selection,the innate immunity and acquired immunity gradually evolve.[Conclusions]In-depth research on parasitic factors of parasitic wasps and their interaction with crop pests immunity and development can not only improve theoretical understanding of insect immunity and development biology,pest biological control and other disciplines,but also be expected to enable the application of some components of parasitic factors to agriculture,medicine and pharmacy.Bactrocera dorsalis is a destructive fruit and vegetable pest.This paper summarized the venom protein of B.dorsalis parasitoids and the immune interaction with hosts,in order to provide theoretical basis for biological control of plant pests by using parasitic natural enemies.展开更多
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed t...Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.展开更多
Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterat...Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterations.A pe rsistent and exagge rated inflammato ry response within the spinal cord accompanies these events(Lima et al.,2022).The complexity and interplay of these mechanisms exacerbate the initial injury,leading to a degenerative process at the injury site.While the initial trauma is unavoidable,the secondary injury begins within minutes and can last for months,creating an optimal window for therapeutic intervention.展开更多
In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-...In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.展开更多
Electromagnetic devices have been widely used in the fields of information communication,medical treatment,electrical engineering,and national defense,and their properties are strongly dependent on the constituent ele...Electromagnetic devices have been widely used in the fields of information communication,medical treatment,electrical engineering,and national defense,and their properties are strongly dependent on the constituent electromagnetic materials.Conversely,electromagnetic metamaterials(EMMs),which are artificially engineered with distinctive electromagnetic properties,can overcome the limitations of natural materials owing to their structural advantages.Three-dimensional(3D)printing is the most effec-tive technique for fabricating EMM devices with different geometric parameters and associated proper-ties.However,conventional 3D-printed EMM devices may lack manufacturing flexibility and environmental adaptability to different physical stimuli,such as electric and magnetic fields.Four-dimensional(4D)printing is an ideal technique for schemes to integrate structural design with intelligent materials environmentally adaptive to external fields,for example,the printed components can change shape under electric stimulation.Given the rapid advancements in the EMM field,this paper first reviews typical EMM devices,their design theories,and underlying principles.Subsequently,it presents various EMM structural topologies and manufacturing technologies,emphasizing the feasibility of combining 3D and 4D printing.In addition,we highlight the important applications of EMMs and their future trends and the challenges associated with functional EMMs and additive manufacturing.展开更多
BACKGROUND Adenomatous polyposis confers an increased risk of developing colorectal cancer.APC and MUTYH are the major genes investigated in patients suspected of having polyposis.In addition to APC and MUTYH genes,ot...BACKGROUND Adenomatous polyposis confers an increased risk of developing colorectal cancer.APC and MUTYH are the major genes investigated in patients suspected of having polyposis.In addition to APC and MUTYH genes,other genes,such as POLE,POLD1,NTHL1,MBD4,MSH3 and MLH3,have recently been associated with polyposis phenotypes,conferring heterogeneity in terms of the clinical,etiological and heritable aspects of patients with polyposis.AIM To investigate the underlying variant landscape in patients with suspected polyposis who lack variants in the APC and MUTYH genes using whole-exome sequencing.METHODS Twenty-seven participants were included in the study and subjected to germline whole-exome sequencing.In addition,their clinical-pathological,personal,and family history data were collected.RESULTS The mean age at diagnosis was 51 years,and most participants had attenuated forms of polyposis(88.9%),with 63.0%diagnosed with a primary tumor,mostly colorectal cancer(76.5%).Among the variants identified,17 were classified as pathogenic or likely pathogenic(in 12 participants),including variants in genes involved in the Wnt/β-catenin signaling pathway,such as ST7 L,A1CF,and DKK4,and variants in DNA-repair genes,such as NTHL1,PNKP,and PMS2,as well as a variant found at the FRK gene identified in a patient with classic polyposis at age 19 and with a family history of polyps.CONCLUSION This study identified novel genes potentially associated with polyposis in patients lacking germline pathogenic variants in the APC and MUTYH genes.These findings support the use of next-generation sequencing for screening,expanding the scope of polyposis-related variants beyond these two genes.展开更多
Cancer is a major global concern due to its high mortality rate.Tumor immunotherapy has revolutionized cancer treatment.However,low response rates and immune-related complications remain challenges.Extracellular vesic...Cancer is a major global concern due to its high mortality rate.Tumor immunotherapy has revolutionized cancer treatment.However,low response rates and immune-related complications remain challenges.Extracellular vesicles(EVs),including exosomes,have emerged as promising therapeutic tools for various pathological conditions,especially cancer.Evidence indicates that changes in the quantity and composition of EVs can influence the immunosuppressive tumor microenvironment,potentially affecting the effectiveness of immunotherapy.Exploiting EVs for immune sensitization has generated significant clinical interest.This review provides an in-depth understanding of the origin of EVs,their therapeutic applications(such as drug delivery nanoplatforms and cancer immunotherapies,including vaccines),diagnostic potential as tumor biomarkers,ongoing EV-based clinical trials,and the challenges encountered in EV-based cancer immunotherapy.展开更多
The application of short videos in agricultural scenarios has become a new form of productive force driving agricultural development,injecting new vitality and opportunities into traditional agriculture.These videos l...The application of short videos in agricultural scenarios has become a new form of productive force driving agricultural development,injecting new vitality and opportunities into traditional agriculture.These videos leverage the unique expressive logic of the platform by adopting a small entry point and prioritizing dissemination rate.They are strategically planned in terms of content,visuals,and interaction to cater to users needs for relaxation,knowledge acquisition,social sharing,agricultural product marketing,and talent display.Through careful design,full creativity,rich emotion,and the creation of distinct character personalities,these videos deliver positive,entertaining,informative,and opinion-driven agricultural content.The production and operation of agricultural short videos can be effectively optimized by analyzing the characteristics of both popular and less popular videos,and utilizing smart tools and trending topics.展开更多
Power transmission lines are a critical component of the entire power system,and ice accretion incidents caused by various types of power systems can result in immeasurable harm.Currently,network models used for ice d...Power transmission lines are a critical component of the entire power system,and ice accretion incidents caused by various types of power systems can result in immeasurable harm.Currently,network models used for ice detection on power transmission lines require a substantial amount of sample data to support their training,and their drawback is that detection accuracy is significantly affected by the inaccurate annotation among training dataset.Therefore,we propose a transformer-based detection model,structured into two stages to collectively address the impact of inaccurate datasets on model training.In the first stage,a spatial similarity enhancement(SSE)module is designed to leverage spatial information to enhance the construction of the detection framework,thereby improving the accuracy of the detector.In the second stage,a target similarity enhancement(TSE)module is introduced to enhance object-related features,reducing the impact of inaccurate data on model training,thereby expanding global correlation.Additionally,by incorporating a multi-head adaptive attention window(MAAW),spatial information is combined with category information to achieve information interaction.Simultaneously,a quasi-wavelet structure,compatible with deep learning,is employed to highlight subtle features at different scales.Experimental results indicate that the proposed model in this paper outperforms existing mainstream detection models,demonstrating superior performance and stability.展开更多
基金supported by National Key Research and Development Technology Project program(SQ2022YFB2400136).
文摘To enable distributed PV to adapt to variations in power grid strength and achieve stable grid connection while enhancing operational flexibility,it is essential to configure grid-connected inverters with an integrated grid-following control mode,allowing smooth switching between GFL and GFM modes.First,impedance models of GFL and GFM PV energy storage VSG systems were established,and grid stability was analyzed.Second,an online impedance identification method based on voltage fluctuation data screening was proposed to enhance the accuracy of impedance identification.Additionally,a PV energy storage GFM/GFL VSG smooth switching method based on current inner loop compensation was introduced to achieve stable grid-connected operation of distributed photovoltaics under changes in strong and weak power grids.Finally,a grid stability analysis was conducted on the multi-machine parallel PV ESS,and a simulation model of a multi-machine parallel PV ESS based on current inner loop compensation was established for testing.Results showed that,compared to using a single GFM or single GFL control for the PV VSG system,the smooth switching method of multi-machine parallel PV ESS effectively suppresses system resonance under variations in power grid strength,enabling adaptive and stable grid-connected operations of distributed PV.
基金financially supported by the Key R&D Program of Shandong Province,China (Grant No. 2023ZLYS01)the National Natural Science Foundation of China (Grant No. 42106172)+8 种基金the Natural Science Foundation of Shandong Province (Grant Nos.ZR2024MD003, ZR2023QD023, ZR2023QD066 and ZR2023QD018)the Consulting and Researching Project of the Chinese Academy of Engineering(Grant Nos. 2024-DFZD-29, 2022-DFZD-35, 2022-XY-21, and 2021-XBZD-13-31)Qingdao Marine Science and Technology Innovation Project (Grant No. 23-1-3-hygg-6-hy)the Natural Science Foundation of Qingdao (Grant Nos. 23-2-1-58-zyyd-jch and 23-2-1-72-zyyd-jch)Project Plan of Pilot Project of Integration of Science,Education and Industry of Qilu University of Technology (Shandong Academy of Sciences)(Grant No. 2023PX035)the Visiting and Training Program for Teachers from Ordinary Undergraduate Universities in Shandong Provincethe Open Fund of Shandong Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation (Grant No. 202302)Major Innovation Project for the Science Education Industry Integration Pilot Project of Qilu University of Technology (Shandong Academy of Sciences)(Grant Nos. 2023HYZX01, and2023JBZ03)University-Industry Collaborative Education Program (Grant No. 202102245036)。
文摘In recent years, with the development of technologies such as the Internet of Things(Io T), big data and cloud computing, digital twin technology has gradually been applied in marine research. The digital twin realizes real-time monitoring, analysis and optimization of the state and behavior of a physical object or system by creating a virtual model. Research shows that digital twin technology has extensive application potential in ship design, marine resource development, marine equipment engineering design and optimization, marine ecological protection and early warning of disasters. Although digital twin technology has great potential in marine research, it also faces many challenges, including the complexity of data acquisition and processing, the accuracy and real-time performance of model construction, and the need for multidisciplinary cross-integration. An in-depth analysis of the technical bottlenecks and future development directions will provide an important reference for subsequent research and promote the further application and development of digital twin technology in marine research.
基金funded by the Santa Casa Neuroscience Awards—Prize Melo e Castro for Spinal Cord Injury Research(MC-18-2021)(to AJS and NAS)by the Wings for Life Spinal Cord Research Foundation(WFL-PT-14/23)(to NAS)+2 种基金funded by national funds through the Foundation for Science and Technology(FCT)—projects UIDB/50026/2020,UIDP/50026/2020,and EXPL/MED-PAT/0931/2021-http://doi.org/10.54499/EXPL/MED PAT/0931/2021supported by the Norte Portugal Regional Operational Programme(NORTE 2020)under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund(ERDF)(to SM)the support given by the Portuguese Foundation of Science and Technology to SM(CEECIND/01902/2017-Doi:10.54499/CEECIND/01902/2017/CP1458/CT0024),and NAS(CEECIND/04794/2007)。
文摘The impact of spinal cord injury(SCI)on the immune system is increasingly recognized in a field traditionally focused on motor impairments.SCI can seriously affect the immune system by progressively disrupting the regulatory mechanisms that control immune responses.This dysregulation varies widely among patients and can evolve over time,ranging from systemic inflammatory responses to immunosuppression,greatly contributing to the morbidity and mortality of individuals with SCI(Bao et al.,2011;Brennan et al.,2024).
基金supported by The Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(RS-2023-00244901)(to RB)。
文摘Challenges in the prevention and treatment of mild cognitive impairment associated with Alzheimer's disease:Increased life expectancy due to advancements in medical care has given rise to an aging population,accompanied by a surge in the incidence of incurable neurodegenerative diseases(NDDs).These diseases primarily affect the cognitive and behavioral functions of older adults by impacting brain activity.Mild cognitive impairment(MCI)is a neurodegenerative condition that affects a significant portion of the population.
基金supported by Basic Science Research Program(Priority Research Institute)through the NRF of Korea funded by the Ministry of Education(2021R1A6A1A10039823)by the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2020R1A6C101B194)。
文摘Lithium-oxygen(Li-O2)batteries are perceived as a promising breakthrough in sustainable electrochemical energy storage,utilizing ambient air as an energy source,eliminating the need for costly cathode materials,and offering the highest theoretical energy density(~3.5 k Wh kg^(-1))among discussed candidates.Contributing to the poor cycle life of currently reported Li-O_(2)cells is singlet oxygen(1O_(2))formation,inducing parasitic reactions,degrading key components,and severely deteriorating cell performance.Here,we harness the chirality-induced spin selectivity effect of chiral cobalt oxide nanosheets(Co_(3)O_(4)NSs)as cathode materials to suppress 1O_(2)in Li-O_(2)batteries for the first time.Operando photoluminescence spectroscopy reveals a 3.7-fold and 3.23-fold reduction in 1O_(2)during discharge and charge,respectively,compared to conventional carbon paperbased cells,consistent with differential electrochemical mass spectrometry results,which indicate a near-theoretical charge-to-O_(2)ratio(2.04 e-/O_(2)).Density functional theory calculations demonstrate that chirality induces a peak shift near the Fermi level,enhancing Co 3d-O 2p hybridization,stabilizing reaction intermediates,and lowering activation barriers for Li_(2)O_(2)formation and decomposition.These findings establish a new strategy for improving the stability and energy efficiency of sustainable Li-O_(2)batteries,abridging the current gap to commercialization.
基金Supported by A grant from the European Commission("Tech Use Disorders"Grant ID:FP7-PEOPLE-2013-IEF-627999)awarded to Olatz Lopez-Fernandez
文摘AIM: To provide a comprehensive overview of clinical studies on the clinical picture of Internet-use related addictions from a holistic perspective. A literature search was conducted using the database Web of Science.METHODS: Over the last 15 years, the number of Internet users has increased by 1000%, and at the same time, research on addictive Internet use has proliferated. Internet addiction has not yet been understood very well, and research on its etiology and natural history is still in its infancy. In 2013, the American Psychiatric Association included Internet Gaming Disorder in the appendix of the updated version of the Diagnostic and Statistical Manual for Mental Disorders(DSM-5) as condition that requires further research prior to official inclusion in the main manual, with important repercussions for research and treatment. To date, reviews have focused on clinical and treatment studies of Internet addiction and Internet Gaming Disorder. This arguably limits the analysis to a specific diagnosis of a potential disorder that has not yet been officially recognised in the Western world, rather than a comprehensive and inclusive investigation of Internet-use related addictions(including problematic Internet use) more generally. RESULTS: The systematic literature review identified a total of 46 relevant studies. The included studies used clinical samples, and focused on characteristics of treatment seekers and online addiction treatment. Four main types of clinical research studies were identified, namely research involving(1) treatment seeker characteristics;(2) psychopharmacotherapy;(3) psychological therapy; and(4) combined treatment. CONCLUSION: A consensus regarding diagnostic criteria and measures is needed to improve reliability across studies and to develop effective and efficient treatment approaches for treatment seekers.
基金supported by Chinese Polar Environment Comprehensive Investigation and Assessment Program (Grant nos. CHINARE2012-2016-03-05, CHINARE2012-2016-04-03, CHINARE20122016-01-05, CHINARE2012-2016-04-01)the Public Science and Technology Research Funds Projects of Ocean (Grant no. 201105022-2)
文摘The Arctic is one of the most sensitive regions that respond through feedback to global climate changes. Climatic, hydrological and ecological changes in the Arctic are clear evidence of global warming. In 2012 and 2014, the 5th and 6th Chinese National Arctic Research Expeditions undertook studies in the Bering Sea, the Arctic Ocean (including the Chukchi Sea), and the Norwegian Sea. These studies provided us with a better understanding of the marine biology and ecology in the Arctic and subarctic regions, particularly in the Pacific Arctic sector. Rapid changes observed in the Arctic environment include the shrinking of cold-water masses in the Bering Sea in the summer, and elevated water temperatures promoting phytoplankton blooms, leading to an increase in phytoplankton transferred to higher trophic levels. As a result, the transfer efficiency of organic matter toward the bottom weakened, leading to a reduction in benthic biomass. This is consistent with expectations that the overall carbon and energy flux will ultimately switch from the dominant mode of sea ice-algae-benthos to one of phytoplankton-zooplankton. Influenced by Pacific water inflow, fluvial runoff and melting sea ice, the Chukchi Sea exhibited different responses to various environmental changes. Interactions between water masses led to other interannual ecological shifts. With the increase in sea ice melt and sunlight in the central region of the Arctic Ocean, the relative abundance of heterotrophic bacteria is expected to increase, and play a vital role in the Arctic microbial loop.
文摘Since traditional solar simulators are mainly applied to spacecraft and photovoltaic industry,they are not suitable for solar radiation measuring instrument test. Therefore,a deep research is carried out on solar simulators to test of solar radiation measuring instrument,so that obtain the requirements of performance test of solar radiation measuring instrument. With a combination of the requirements for national regulations of metrological verification and performance test of pyranometer and pyrheliometer,it lays emphasis on the research of design methods for improving radiation uniformity and stability of solar simulators; it also focuses on design methods of multidimensional detection workbench,which achieves different detection of solar radiation. After practical test,solar irradiation is within Φ60 mm; irradiation non-uniformity is better than ±0.8%; instability is better than ±0.72%;rotating angle precision is better than 0.09°. Then,solar simulator is used to carry out pyranometer sensitivity test,pyranometer directional response test,pyranometer tilt response test and non-linearity test for radiation instruments. Test results showthat the solar simulator meets the testing requirements of solar radiation measuring instruments.
文摘To alleviate the restriction of shortages of labor force and technology on agricultural development in China, the technology of crop transplanting in well cellar was proposed. This technology was that the holes for transplanting in well cellar were made with dedicated tools for making well cellar, and the seedlings were placed into the well cellar vertically during transplanting. This new technology integrates heat preservation, management of rising temperature, early transplanting and deep planting. Results showed that the technology of transplanting in well cellar improved the growing environment of crops after transplanting through elevation of temperature and heat preservation, and tempered the dramatic change in the temperatures encountered by transplanted seedlings. This technology significantly reduced labor force requirement by 98.06%, 58.96% and 64.44% in tobacco, maize and pepper, respectively. Transplanting in well cellar without mulching film further lowered the labor force requirement, with decrease by 121.77% and 115.40% in maize and pepper, respectively. In addition, this technology significantly promoted crop growth, reduced the time until marketing for maize and pepper by 11 d and 6 d, respectively, and increased economic benefits by 67.03% and 44.24%, respectively. Thus, the technology of transplanting in well cellar showed strong promise for improving upon existing technologies to provide greater economic returns, particularly in areas where labor force shortage threatens to hamper agricultural production.
基金Key Extension Program on Scientific and Technological Achievements of China (No. 2004EC000132) Technology Fund of China University of Mining and Technology,China (No. 0P080307)
文摘The unified dynamic theory reveals the substrate-based nonlinear growth phenomena. It means that the environment of high organism concentration and low substrate state is useful for the growth of weak floras. With ecological superior nitrification denltrification ( ECOSUNIDE ) technology, high sludge concentration by distributing influent to anaerobic and anoxic zones is carried out, and the ecological superiorities of nitrifiers, denitrifiers, and phosphate accumulating organisms (PAOs) get to be promoted. One of the anaerobic/anoxic/oxic(A/A/O) treatment lines of a sewage treatment plant with ECOSUNIDE technology for further investigation on the nutrient removal efficiency is reformed. The advantages of ECOSUNIDE, such as high efficiency and saving energy, are well demonstrated, even under the condition of low temperature (about 15℃) and carbon-resource (C/N ratio lower than 2. 5 ). In ECOSUNIDE system, the effluent indexes as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and NH3--N reach the Class I-A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB18918-2002 ), and suspended substance ( SS ), total nitrogen (TN), and total phosphorus(TP) meet the Class I -B criteria. While the effluent qualities of A/A/O system only reach the secondary discharge standard. Through the comparison on the sludge character of ECOSUNH)E system with A/A/O, more abundant biofacies, darker and more intense zoogloea, more obvious filamentous bacterium, and clearer floes edges in ECOSUNIDE system are found.
基金the fund program of research on re-electrification(heat pump clean heating)to promote the new energy consumption in Shaanxi power grid(5226KY18002P).
文摘In view of the Three North areas existing wind power absorption and environment pollution problems,the previous scholars have improved the wind abandon problem by adding electrothermal coupling equipment or optimizing power grid operation.In this paper,an electrothermal integrated energy system including heat pump and thermal storage units was proposed.The scheduling model was based on the load data and the output characteristics of power units,each power unit capacity was programmed without constraints,and the proposed scheduling model was compared with the traditional combined heat and power scheduling model.Results showed that the investment and pollutant discharge of the system was reduced respectively.Wind power was fully absorbed.Compared with the traditional thermal power unit,the proportion of the output was significantly decreased by the proposed model.The proposed system could provide a new prospect for wind power absorption and environment protection.
基金Supported by Fund of Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests (2020-ST-05)Science and Technology Major Project of Guangxi (GK AA17202017-2).
文摘[Objectives]The use of natural enemies of living insects and their derivatives can effectively avoid the problems of pesticide residues,pest resistance,biodiversity decline,control effect weakening and so on.[Methods]Parasites inject various parasitic factors into hosts to inhibit the development of hosts,adjust the immunity of hosts,interfere with the growth and development of hosts,and reduce the nutrition metabolism of hosts,so as to ensure the growth and development of the offspring.Host pests can escape or conquer the parasitism of parasitic wasps through immune defense system in order to reproduce their own offspring.[Results]Under intense and strong selection pressure,in order to effectively ensure the success rate of parasitism,the adaptive diversity of parasitism strategies of parasitic wasps is finally caused.In the process of evolution and under the pressure of directional selection,the innate immunity and acquired immunity gradually evolve.[Conclusions]In-depth research on parasitic factors of parasitic wasps and their interaction with crop pests immunity and development can not only improve theoretical understanding of insect immunity and development biology,pest biological control and other disciplines,but also be expected to enable the application of some components of parasitic factors to agriculture,medicine and pharmacy.Bactrocera dorsalis is a destructive fruit and vegetable pest.This paper summarized the venom protein of B.dorsalis parasitoids and the immune interaction with hosts,in order to provide theoretical basis for biological control of plant pests by using parasitic natural enemies.
基金funded by National funds,through the Foundation for Science and Technology (FCT)-project UIDB/50026/2020 (DOI 10.54499/UIDB/50026/2020),UIDP/50026/2020 (DOI 10.54499/UIDP/50026/2020) and LA/P/0050/2020 (DOI 10.54499/LA/P/0050/2020)(to NAS)Financial support was also provided by Prémios Santa Casa Neurociências–Prize Melo e Castro for Spinal Cord Injury Research (MC-18-2021)Wings for Life Spinal Cord Research Foundation (WFL-PT-14/23)(to NAS)。
文摘Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
基金funded by national funds,through the Foundation for Science and Technology(FCT)-project UIDB/50026/2020,UIDP/50026/2020(to NAS),EXPL/MEDPAT/0931/2021(to SM)Financial support was provided by Prémios Santa Casa Neurociências-Prize Melo e Castro for Spinal Cord Injury Research(MC-18-2021)+2 种基金Wings For Life Spinal Cord Research Foundation(WFL-PT-14/23)"la Caixa"Foundation(HR23-00484)(to NAS)the FCT for the Scientific Employment Stimulus to NAS and SM(CEECIND/04794/2017 and CEECIND/01902/2017)。
文摘Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterations.A pe rsistent and exagge rated inflammato ry response within the spinal cord accompanies these events(Lima et al.,2022).The complexity and interplay of these mechanisms exacerbate the initial injury,leading to a degenerative process at the injury site.While the initial trauma is unavoidable,the secondary injury begins within minutes and can last for months,creating an optimal window for therapeutic intervention.
基金supported by the National Natural Science Foundation of China(No.5217-4205)Shaanxi Provincial Outstanding Youth Science Fund Project(No.2023-JC-JQ-40)+4 种基金National Key Research and Development Project(No.2023YFC3009004)Key Project of Shaanxi Provincial Department of Education(No.22JY040)Xinjiang Uygur Autonomous Region Key Research and Development Task Special Project(No.2022B01034-3)Key Laboratory of Green Coal Mining in Xinjiang,Ministry of Education(No.KLXGY-KA2404)Shaanxi Provincial Key Research and Development Task General Project(No.2024GX–YBXM-490)。
文摘In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.
基金sponsored by the National Natural Science Foundation of China(52275331 and 52205358)the National Key Research and Development Program of China(2023YFB4604800)+1 种基金the Key Research and Development Program of Hubei Province(2022BAA011)the Hong Kong Scholars Program(XJ2022014).
文摘Electromagnetic devices have been widely used in the fields of information communication,medical treatment,electrical engineering,and national defense,and their properties are strongly dependent on the constituent electromagnetic materials.Conversely,electromagnetic metamaterials(EMMs),which are artificially engineered with distinctive electromagnetic properties,can overcome the limitations of natural materials owing to their structural advantages.Three-dimensional(3D)printing is the most effec-tive technique for fabricating EMM devices with different geometric parameters and associated proper-ties.However,conventional 3D-printed EMM devices may lack manufacturing flexibility and environmental adaptability to different physical stimuli,such as electric and magnetic fields.Four-dimensional(4D)printing is an ideal technique for schemes to integrate structural design with intelligent materials environmentally adaptive to external fields,for example,the printed components can change shape under electric stimulation.Given the rapid advancements in the EMM field,this paper first reviews typical EMM devices,their design theories,and underlying principles.Subsequently,it presents various EMM structural topologies and manufacturing technologies,emphasizing the feasibility of combining 3D and 4D printing.In addition,we highlight the important applications of EMMs and their future trends and the challenges associated with functional EMMs and additive manufacturing.
基金Supported by the National Oncology Care Support Program,No.25000.056766/2015-64.
文摘BACKGROUND Adenomatous polyposis confers an increased risk of developing colorectal cancer.APC and MUTYH are the major genes investigated in patients suspected of having polyposis.In addition to APC and MUTYH genes,other genes,such as POLE,POLD1,NTHL1,MBD4,MSH3 and MLH3,have recently been associated with polyposis phenotypes,conferring heterogeneity in terms of the clinical,etiological and heritable aspects of patients with polyposis.AIM To investigate the underlying variant landscape in patients with suspected polyposis who lack variants in the APC and MUTYH genes using whole-exome sequencing.METHODS Twenty-seven participants were included in the study and subjected to germline whole-exome sequencing.In addition,their clinical-pathological,personal,and family history data were collected.RESULTS The mean age at diagnosis was 51 years,and most participants had attenuated forms of polyposis(88.9%),with 63.0%diagnosed with a primary tumor,mostly colorectal cancer(76.5%).Among the variants identified,17 were classified as pathogenic or likely pathogenic(in 12 participants),including variants in genes involved in the Wnt/β-catenin signaling pathway,such as ST7 L,A1CF,and DKK4,and variants in DNA-repair genes,such as NTHL1,PNKP,and PMS2,as well as a variant found at the FRK gene identified in a patient with classic polyposis at age 19 and with a family history of polyps.CONCLUSION This study identified novel genes potentially associated with polyposis in patients lacking germline pathogenic variants in the APC and MUTYH genes.These findings support the use of next-generation sequencing for screening,expanding the scope of polyposis-related variants beyond these two genes.
文摘Cancer is a major global concern due to its high mortality rate.Tumor immunotherapy has revolutionized cancer treatment.However,low response rates and immune-related complications remain challenges.Extracellular vesicles(EVs),including exosomes,have emerged as promising therapeutic tools for various pathological conditions,especially cancer.Evidence indicates that changes in the quantity and composition of EVs can influence the immunosuppressive tumor microenvironment,potentially affecting the effectiveness of immunotherapy.Exploiting EVs for immune sensitization has generated significant clinical interest.This review provides an in-depth understanding of the origin of EVs,their therapeutic applications(such as drug delivery nanoplatforms and cancer immunotherapies,including vaccines),diagnostic potential as tumor biomarkers,ongoing EV-based clinical trials,and the challenges encountered in EV-based cancer immunotherapy.
文摘The application of short videos in agricultural scenarios has become a new form of productive force driving agricultural development,injecting new vitality and opportunities into traditional agriculture.These videos leverage the unique expressive logic of the platform by adopting a small entry point and prioritizing dissemination rate.They are strategically planned in terms of content,visuals,and interaction to cater to users needs for relaxation,knowledge acquisition,social sharing,agricultural product marketing,and talent display.Through careful design,full creativity,rich emotion,and the creation of distinct character personalities,these videos deliver positive,entertaining,informative,and opinion-driven agricultural content.The production and operation of agricultural short videos can be effectively optimized by analyzing the characteristics of both popular and less popular videos,and utilizing smart tools and trending topics.
文摘Power transmission lines are a critical component of the entire power system,and ice accretion incidents caused by various types of power systems can result in immeasurable harm.Currently,network models used for ice detection on power transmission lines require a substantial amount of sample data to support their training,and their drawback is that detection accuracy is significantly affected by the inaccurate annotation among training dataset.Therefore,we propose a transformer-based detection model,structured into two stages to collectively address the impact of inaccurate datasets on model training.In the first stage,a spatial similarity enhancement(SSE)module is designed to leverage spatial information to enhance the construction of the detection framework,thereby improving the accuracy of the detector.In the second stage,a target similarity enhancement(TSE)module is introduced to enhance object-related features,reducing the impact of inaccurate data on model training,thereby expanding global correlation.Additionally,by incorporating a multi-head adaptive attention window(MAAW),spatial information is combined with category information to achieve information interaction.Simultaneously,a quasi-wavelet structure,compatible with deep learning,is employed to highlight subtle features at different scales.Experimental results indicate that the proposed model in this paper outperforms existing mainstream detection models,demonstrating superior performance and stability.