The year 2024 marked the 40th anniversary of Advances in Atmospheric Sciences(AAS),as well as the centenary of the Chinese Meteorological Society(CMS).The inaugural issue of AAS was published in 1984,initially being s...The year 2024 marked the 40th anniversary of Advances in Atmospheric Sciences(AAS),as well as the centenary of the Chinese Meteorological Society(CMS).The inaugural issue of AAS was published in 1984,initially being sponsored primarily by Chinese National Committee for the International Association of Meteorological and Atmospheric Sciences(IAMAS)and the Institute of Atmospheric Physics at the Chinese Academy of Sciences.In 2006,Springer became AAS’s international publisher.Then,in 2015,the CMS joined in sponsoring AAS,and in the same year,AAS also became an affiliated journal of the IAMAS.These milestone events helped broaden the reach of AAS,culminating in the journal establishing itself as a truly international journal supporting the advancement of the atmospheric sciences.展开更多
In this paper,we analyse the positioning of traditional science centre–style popular-science venues as a specific type of popular-science infrastructure.We also briefly elaborate on the enlightening role and value of...In this paper,we analyse the positioning of traditional science centre–style popular-science venues as a specific type of popular-science infrastructure.We also briefly elaborate on the enlightening role and value of science-history education for youth based on our own understanding.Through the analysis of these two aspects,we propose a‘reproduction’model of education on science history based on this type of popular-science venue and analyse the basic patterns that should be‘re-enacted’in exhibition design and the methods for selecting related science-history themes.展开更多
Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research fun...Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.展开更多
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.展开更多
Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate...Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.展开更多
Background:The advent of the self-media age,digital humanities,and artificial intelligence(AI)technologies is gradually reshaping the narrative frameworks of the history of science and technology in general and the hi...Background:The advent of the self-media age,digital humanities,and artificial intelligence(AI)technologies is gradually reshaping the narrative frameworks of the history of science and technology in general and the history of medicine in particular,as it transforms the specific shape of contemporary medical science and health communication practice with the help of interactive,scenario-based communication ecosystems.Methods:This paper focuses on the interactive relationship between the history of science and science communication,employing historical tracing and case study comparison as research methods to explore the pathways and innovative models for reintegrating the history of science and technology including the history of medicine into contemporary scientific discourse.Results:The study finds that in the Chinese context,three key pathways facilitate the engagement of the history of science and technology including the history of medicine in science communication:administrative intervention,value reconstruction,and personalized adaptation.Specifically,administrative intervention promotes the integration of the history of science education into talent development through policy design;value reconstruction,centered on the scientific spirit,enhances societal cultural recognition of technological progress;and personalized adaptation leverages big data and social media technologies to enable precise and tailored knowledge dissemination.Conclusion:The rise of the“web-based knowledge brokering model”in the era of social media has introduced professional knowledge brokers,ensuring the accuracy and accessibility of science communication.These innovations not only serve as decision-making simulation tools for medical science and health communication,linking historical insights with contemporary practice,but also provide theoretical foundations and practical paradigms for realizing the value of the history of science and technology in the digital era.展开更多
The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in ...The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in the field of life sciences[1−7].Among them,supramolecular materials have garnered increasing attention in life sciences owing to their distinctive self-assembly capabilities and intelligent responsiveness[8−12].展开更多
A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,...A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
The core-surface flow is crucial for understanding the dynamics of the Earth's outer core and geomagnetic secular variations.Conventional core flow models often use a single set of spherical harmonic coefficients ...The core-surface flow is crucial for understanding the dynamics of the Earth's outer core and geomagnetic secular variations.Conventional core flow models often use a single set of spherical harmonic coefficients to represent the flow both inside and outside the tangent cylinder,inherently imposing continuity across the tangent cylinder around the solid inner core.To address this limitation,we present a core-surface flow inversion framework based on physics-informed neural networks.This framework employs distinct neural network representations for the flow inside and outside the tangent cylinder,allowing for discontinuities as the flow crosses the tangent cylinder.Additionally,it incorporates secular acceleration data to constrain the temporal evolution of the core flow.Using this inversion framework,we derive a new core-surface flow model spanning 2001 to 2024 from a geomagnetic model,incorporating the latest magnetic data from Swarm satellites and Macao Science Satellite-1.The recovered model reveals persistent large-scale circulation linked to westward drift,significant temporal variations in the equatorial Pacific,and distinct jet-like structures at the poles.The inversion also reveals a large-scale wave pattern in equatorial azimuthal flow acceleration,corresponding to observed geomagnetic jerks and likely resulting from quasi-geostrophic magneto-Coriolis waves.Additionally,the framework infers small-scale magnetic fields at the core-mantle boundary,highlighting split flux concentrations and localized high-latitude patches.展开更多
High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science ...High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to charact...Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.展开更多
The Macao Science Satellite-1(MSS-1)is the first space science satellite jointly developed on the Chinese mainland and in Macao region.It comprises two satellites,named MSS-1A and MSS-1B,and holds considerable importa...The Macao Science Satellite-1(MSS-1)is the first space science satellite jointly developed on the Chinese mainland and in Macao region.It comprises two satellites,named MSS-1A and MSS-1B,and holds considerable importance in China’s space exploration endeavors.Among these,MSS-1A is the world’s first high-precision scientific satellite dedicated to exploring the geomagnetic field and space environment at low latitudes.Equipped with two high-precision vector magnetometers and one scalar magnetometer,which are integrally installed on a highly stable nonmagnetic optical bench,the MSS-1A enables simultaneous high-precision measurements of both the Earth’s vector magnetic field and its scalar components.Its design integrates several state-of-the-art technologies,including arc-second-level thermal stability control,nonmagnetic thermal control for the optical bench,and ultra-high magnetic cleanliness control.These innovations effectively minimize magnetic interference originating from the satellite itself,thereby substantially improving the precision of geomagnetic field measurements and establishing a robust technical foundation for future magnetic survey satellite constellations.展开更多
Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagneti...Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.展开更多
This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were iso...This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.展开更多
Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit ...Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit a rapid shift toward higher energy channels during the flare's rising phase,followed by a gradual decrease during the decay phase.Through precise energy calibration,the centroids are determined with high accuracy.Temperature and velocity are then self-consistently derived by comparing the centroids with those calculated from the synthesized line features using the latest CHIANTI atomic database(ver.10.1).The calculated maximum velocity reaches up to 710±60 km s-1,which significantly exceeds the previously reported values.Our results suggest that the entire shift of soft X-ray lines may occur during the process of chromospheric evaporation.展开更多
The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new mate...The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.展开更多
Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rat...Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rates. As electrical conductivity in the Earth's interior is highly sensitive to water content, it is an important geophysical parameter for understanding the deep Earth water content. Since its launch on May 21, 2023, the MSS-1(Macao Science Satellite-1) mission has operated for nearly one year, with its magnetometer achieving a precision of higher than 0.5 nT after orbital testing and calibration. Orbiting at 450 kilometers with a unique 41-degree inclination, the satellite enables high-density observations across multiple local times, allowing detailed monitoring of low-latitude regions and enhancing data for global conductivity imaging. To better understand the global distribution of water within the Earth's interior, it is crucial to study internal conductivity structure and water content distribution. To this aim, we introduce a method for using MSS-1 data to estamate induced magnetic fields related to magnetospheric currents. We then develop a trans-dimensional Bayesian approach to reveal Earth's internal conductivity, providing probable conductivity structure with an uncertainty analysis. Finally, by integrating known mineral composition, pressure, and temperature distribution within the mantle, we estimate the water content range in the mantle transition zone, concluding that this region may contain the equivalent of up to 3.0 oceans of water, providing compelling evidence that supports the hypothesis of a deep water cycle within the Earth's interior.展开更多
文摘The year 2024 marked the 40th anniversary of Advances in Atmospheric Sciences(AAS),as well as the centenary of the Chinese Meteorological Society(CMS).The inaugural issue of AAS was published in 1984,initially being sponsored primarily by Chinese National Committee for the International Association of Meteorological and Atmospheric Sciences(IAMAS)and the Institute of Atmospheric Physics at the Chinese Academy of Sciences.In 2006,Springer became AAS’s international publisher.Then,in 2015,the CMS joined in sponsoring AAS,and in the same year,AAS also became an affiliated journal of the IAMAS.These milestone events helped broaden the reach of AAS,culminating in the journal establishing itself as a truly international journal supporting the advancement of the atmospheric sciences.
文摘In this paper,we analyse the positioning of traditional science centre–style popular-science venues as a specific type of popular-science infrastructure.We also briefly elaborate on the enlightening role and value of science-history education for youth based on our own understanding.Through the analysis of these two aspects,we propose a‘reproduction’model of education on science history based on this type of popular-science venue and analyse the basic patterns that should be‘re-enacted’in exhibition design and the methods for selecting related science-history themes.
文摘Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.
基金supported in part by the National Natural Science Foundation of China under Grant 62371181in part by the Changzhou Science and Technology International Cooperation Program under Grant CZ20230029+1 种基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2021R1A2B5B02087169)supported under the framework of international cooperation program managed by the National Research Foundation of Korea(2022K2A9A1A01098051)。
文摘The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate decisions.Data science is the science of dealing with data and its relationships through intelligent approaches.Most state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their integration.Therefore,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics.The paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based systems.Extensive insights into IoT data security,privacy,and challenges are visualized in the context of data science for IoT.In addition,this study reveals the current opportunities to enhance data science and IoT market development.The current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB0740000National Key Research and Development Program of China,No.2022YFB3904200,No.2022YFF0711601+1 种基金Key Project of Innovation LREIS,No.PI009National Natural Science Foundation of China,No.42471503。
文摘Deep-time Earth research plays a pivotal role in deciphering the rates,patterns,and mechanisms of Earth's evolutionary processes throughout geological history,providing essential scientific foundations for climate prediction,natural resource exploration,and sustainable planetary stewardship.To advance Deep-time Earth research in the era of big data and artificial intelligence,the International Union of Geological Sciences initiated the“Deeptime Digital Earth International Big Science Program”(DDE)in 2019.At the core of this ambitious program lies the development of geoscience knowledge graphs,serving as a transformative knowledge infrastructure that enables the integration,sharing,mining,and analysis of heterogeneous geoscience big data.The DDE knowledge graph initiative has made significant strides in three critical dimensions:(1)establishing a unified knowledge structure across geoscience disciplines that ensures consistent representation of geological entities and their interrelationships through standardized ontologies and semantic frameworks;(2)developing a robust and scalable software infrastructure capable of supporting both expert-driven and machine-assisted knowledge engineering for large-scale graph construction and management;(3)implementing a comprehensive three-tiered architecture encompassing basic,discipline-specific,and application-oriented knowledge graphs,spanning approximately 20 geoscience disciplines.Through its open knowledge framework and international collaborative network,this initiative has fostered multinational research collaborations,establishing a robust foundation for next-generation geoscience research while propelling the discipline toward FAIR(Findable,Accessible,Interoperable,Reusable)data practices in deep-time Earth systems research.
基金The National Key R&D project granted by the Ministry of Science and Technology(2024YFA0917200)Digital Museum Construction Project of Chinese Centre for Disease Control and Prevention(BB2110240080)Science Communication Project of Chinese Academy of Sciences(CX2090000008).
文摘Background:The advent of the self-media age,digital humanities,and artificial intelligence(AI)technologies is gradually reshaping the narrative frameworks of the history of science and technology in general and the history of medicine in particular,as it transforms the specific shape of contemporary medical science and health communication practice with the help of interactive,scenario-based communication ecosystems.Methods:This paper focuses on the interactive relationship between the history of science and science communication,employing historical tracing and case study comparison as research methods to explore the pathways and innovative models for reintegrating the history of science and technology including the history of medicine into contemporary scientific discourse.Results:The study finds that in the Chinese context,three key pathways facilitate the engagement of the history of science and technology including the history of medicine in science communication:administrative intervention,value reconstruction,and personalized adaptation.Specifically,administrative intervention promotes the integration of the history of science education into talent development through policy design;value reconstruction,centered on the scientific spirit,enhances societal cultural recognition of technological progress;and personalized adaptation leverages big data and social media technologies to enable precise and tailored knowledge dissemination.Conclusion:The rise of the“web-based knowledge brokering model”in the era of social media has introduced professional knowledge brokers,ensuring the accuracy and accessibility of science communication.These innovations not only serve as decision-making simulation tools for medical science and health communication,linking historical insights with contemporary practice,but also provide theoretical foundations and practical paradigms for realizing the value of the history of science and technology in the digital era.
基金supported by the National Natural Science Foundation of China(22101043)the Fundamental Research Funds for the Central Universities(N2205013,N232410019,N2405013)+3 种基金Natural Science Foundation of Liaoning Province(2023-MSBA-068)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLHOP202203006)the Key Laboratory of Functional Molecular Solids,Ministry of Education(FMS2023005)Northeastern University。
文摘The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in the field of life sciences[1−7].Among them,supramolecular materials have garnered increasing attention in life sciences owing to their distinctive self-assembly capabilities and intelligent responsiveness[8−12].
基金The National Science Foundation funded this research under the Dy-namics of Coupled Natural and Human Systems program(Grants No.DEB-1212183 and BCS-1826839)support from San Diego State University and Auburn University.
文摘A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金supported by the National Natural Science Foundation of China (12250012,42250101)the Macao Foundation。
文摘The core-surface flow is crucial for understanding the dynamics of the Earth's outer core and geomagnetic secular variations.Conventional core flow models often use a single set of spherical harmonic coefficients to represent the flow both inside and outside the tangent cylinder,inherently imposing continuity across the tangent cylinder around the solid inner core.To address this limitation,we present a core-surface flow inversion framework based on physics-informed neural networks.This framework employs distinct neural network representations for the flow inside and outside the tangent cylinder,allowing for discontinuities as the flow crosses the tangent cylinder.Additionally,it incorporates secular acceleration data to constrain the temporal evolution of the core flow.Using this inversion framework,we derive a new core-surface flow model spanning 2001 to 2024 from a geomagnetic model,incorporating the latest magnetic data from Swarm satellites and Macao Science Satellite-1.The recovered model reveals persistent large-scale circulation linked to westward drift,significant temporal variations in the equatorial Pacific,and distinct jet-like structures at the poles.The inversion also reveals a large-scale wave pattern in equatorial azimuthal flow acceleration,corresponding to observed geomagnetic jerks and likely resulting from quasi-geostrophic magneto-Coriolis waves.Additionally,the framework infers small-scale magnetic fields at the core-mantle boundary,highlighting split flux concentrations and localized high-latitude patches.
文摘High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
基金supported by the National Natural Science Foundation of China (42250101)the Macao Foundation. The computation made use of the high-performance computing resources at the center of the MSS data processing and analysis。
文摘Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.
文摘The Macao Science Satellite-1(MSS-1)is the first space science satellite jointly developed on the Chinese mainland and in Macao region.It comprises two satellites,named MSS-1A and MSS-1B,and holds considerable importance in China’s space exploration endeavors.Among these,MSS-1A is the world’s first high-precision scientific satellite dedicated to exploring the geomagnetic field and space environment at low latitudes.Equipped with two high-precision vector magnetometers and one scalar magnetometer,which are integrally installed on a highly stable nonmagnetic optical bench,the MSS-1A enables simultaneous high-precision measurements of both the Earth’s vector magnetic field and its scalar components.Its design integrates several state-of-the-art technologies,including arc-second-level thermal stability control,nonmagnetic thermal control for the optical bench,and ultra-high magnetic cleanliness control.These innovations effectively minimize magnetic interference originating from the satellite itself,thereby substantially improving the precision of geomagnetic field measurements and establishing a robust technical foundation for future magnetic survey satellite constellations.
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
基金funded by NSFC under grants 12250014, 42250101 and 12403068supported by youth funding of Jiangsu province BK20241707+1 种基金supported by the Macao FoundationXinjiang Uygur Autonomous Region for the support through “Tianchi Talent” special expert project。
文摘Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Administration(D020303)。
文摘This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.
文摘Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit a rapid shift toward higher energy channels during the flare's rising phase,followed by a gradual decrease during the decay phase.Through precise energy calibration,the centroids are determined with high accuracy.Temperature and velocity are then self-consistently derived by comparing the centroids with those calculated from the synthesized line features using the latest CHIANTI atomic database(ver.10.1).The calculated maximum velocity reaches up to 710±60 km s-1,which significantly exceeds the previously reported values.Our results suggest that the entire shift of soft X-ray lines may occur during the process of chromospheric evaporation.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103)the Macao Foundation,and the Science and Technology Development Fund,Macao SAR(File No.0002/2019/APD)。
文摘The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation.
文摘Water content, whether as free or lattice-bound water, is a crucial factor in determining the Earth's internal thermal state and plays a key role in volcanic eruptions, melting phenomena, and mantle convection rates. As electrical conductivity in the Earth's interior is highly sensitive to water content, it is an important geophysical parameter for understanding the deep Earth water content. Since its launch on May 21, 2023, the MSS-1(Macao Science Satellite-1) mission has operated for nearly one year, with its magnetometer achieving a precision of higher than 0.5 nT after orbital testing and calibration. Orbiting at 450 kilometers with a unique 41-degree inclination, the satellite enables high-density observations across multiple local times, allowing detailed monitoring of low-latitude regions and enhancing data for global conductivity imaging. To better understand the global distribution of water within the Earth's interior, it is crucial to study internal conductivity structure and water content distribution. To this aim, we introduce a method for using MSS-1 data to estamate induced magnetic fields related to magnetospheric currents. We then develop a trans-dimensional Bayesian approach to reveal Earth's internal conductivity, providing probable conductivity structure with an uncertainty analysis. Finally, by integrating known mineral composition, pressure, and temperature distribution within the mantle, we estimate the water content range in the mantle transition zone, concluding that this region may contain the equivalent of up to 3.0 oceans of water, providing compelling evidence that supports the hypothesis of a deep water cycle within the Earth's interior.