The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the ...The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the same compact set in a group of several functions, sothey can be directly used to the numerical discretion on the finite interval. Numerical tests showthat general boundary conditions can be enforced with the penalty method, and thatpesedospectral-multiwavelet-Galerkin method can well track the solutions' development. This alsoproves that pesedospectral-multiwavelet-Galerkin method is effective.展开更多
The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal ...The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (p2s..v2s2./p1v12) is between 1.0-2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When p2sv2s2/p1v12 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.展开更多
The transient coupled radiative and conductive heat transfer in a semitransparent composite under the complexboundary conditidns is investigated by the ray tracing method in combination with Hottel’s zonal method and...The transient coupled radiative and conductive heat transfer in a semitransparent composite under the complexboundary conditidns is investigated by the ray tracing method in combination with Hottel’s zonal method and thecontrol-volume method. The composite is composed of tWo plane layers of nonscattering sendtransparent media withthe different thermophysical Properties in each layer. Both boundals surfaces and the internal interface aresemitransparent. The reflections are assUmed diffuse or specular. The transient temperature distributions in thecomposite are Obtained for the combined thermal boundary conditions of incident radiation and convective heat transfer.Under diffuse reflection, the resultS in this paper are separately compared with the steady and transient results ofPrevious work. The comparison shows the reliability and the high calculating accuracy of the formulas derived in thespaper. The Present analysis includes the effeCts of the optical thickness, the conduchon-radiation parameter, the spectralproperty and the renechve mode on the transient temperature distributions.展开更多
By introducing the concept of radiosity intensity to diffuse surfaces, the ray tracing method is improved to analyze the thermal emission of a disc body of gray semitransparent material. The two plane sur-faces of the...By introducing the concept of radiosity intensity to diffuse surfaces, the ray tracing method is improved to analyze the thermal emission of a disc body of gray semitransparent material. The two plane sur-faces of the disc body are both specularly reflecting, and the fiank surface is either diffusely reflecting or specularly reflecting. The apparent thermal emission from one plane sllrface is investigated with considering the infiuences of the characteristic optical thickness, the dimensionless radius, the refrac-tive index of the material and the reflecting characteristics of the flank surface. The directional and hemispherical emissions show considerable differences under different refiecting characteristics of the flank surface. Moreover, in some cases, the emission not only varies with the viewing direction but also with the apparent emitting position on the plane surface. Some interesting results are presented and discussed.展开更多
基金This project is supported by National Natural Science Foundation of China(No. 19971020) Multidiseipline Scientific Research Foundation of Harbin Institute of Technology, China(No.HIT.MD2001.26).
文摘The element of pesedospectral-multiwavelet-Galerkin method, and how tocombine it with penalty method for treating boundary conditions are given. Multiwavelet bases don'toverlap on the given scale, and possess the same compact set in a group of several functions, sothey can be directly used to the numerical discretion on the finite interval. Numerical tests showthat general boundary conditions can be enforced with the penalty method, and thatpesedospectral-multiwavelet-Galerkin method can well track the solutions' development. This alsoproves that pesedospectral-multiwavelet-Galerkin method is effective.
文摘The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air (SSA) in a test model of 420t/h utility boiler, applying Horizontal Bias Combustion Pulverized Coal Burner with Side Secondary Air (HBC-SSA Burner). Experimental results show that, when the ram pressure ratio of side secondary air (SSA) to primary air (PA) (p2s..v2s2./p1v12) is between 1.0-2.4, the furnace aerodynamic field only varies slightly. The relative rotational diameters (φ/L) in the burner domain are moderate and the furnace is in good fullness. When p2sv2s2/p1v12 is beyond 4, φ/L is so large that the stream sweeps water-cooled wall and rotates strongly in the furnace. Therefore, slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation. This investigation provides the basis for the application of this new type burner. In addition, numerical simulations are conducted, and some defects in the numerical simulation are also pointed out and analyzed in this paper.
文摘The transient coupled radiative and conductive heat transfer in a semitransparent composite under the complexboundary conditidns is investigated by the ray tracing method in combination with Hottel’s zonal method and thecontrol-volume method. The composite is composed of tWo plane layers of nonscattering sendtransparent media withthe different thermophysical Properties in each layer. Both boundals surfaces and the internal interface aresemitransparent. The reflections are assUmed diffuse or specular. The transient temperature distributions in thecomposite are Obtained for the combined thermal boundary conditions of incident radiation and convective heat transfer.Under diffuse reflection, the resultS in this paper are separately compared with the steady and transient results ofPrevious work. The comparison shows the reliability and the high calculating accuracy of the formulas derived in thespaper. The Present analysis includes the effeCts of the optical thickness, the conduchon-radiation parameter, the spectralproperty and the renechve mode on the transient temperature distributions.
文摘By introducing the concept of radiosity intensity to diffuse surfaces, the ray tracing method is improved to analyze the thermal emission of a disc body of gray semitransparent material. The two plane sur-faces of the disc body are both specularly reflecting, and the fiank surface is either diffusely reflecting or specularly reflecting. The apparent thermal emission from one plane sllrface is investigated with considering the infiuences of the characteristic optical thickness, the dimensionless radius, the refrac-tive index of the material and the reflecting characteristics of the flank surface. The directional and hemispherical emissions show considerable differences under different refiecting characteristics of the flank surface. Moreover, in some cases, the emission not only varies with the viewing direction but also with the apparent emitting position on the plane surface. Some interesting results are presented and discussed.