期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nonlinear Time-Varying Systems Identification Using Basis Sequence Expansions Combined with Neural Networks
1
作者 顾成奎 王正欧 孙雅明 《Transactions of Tianjin University》 EI CAS 2003年第1期71-74,共4页
A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning ... A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results. 展开更多
关键词 nonlinear time varying systems IDENTIFICATION basis sequence expansions neural networks
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部