This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncer...This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.展开更多
Some existing methods for chaos control in engineering fields are analyzed and their drawbacks are pointed out. A tracking method can solve these problems to some extent, but it still depends on the mathematical model...Some existing methods for chaos control in engineering fields are analyzed and their drawbacks are pointed out. A tracking method can solve these problems to some extent, but it still depends on the mathematical model of the system to be controlled. An intelligent method based on fuzzy neural network (FNN) is used to control chaos in engineering fields. The FNN is employed to learn the inherent dynamics from the input and output of chaos, which can be used in the inverse system method, so that the method is free of the exact mathematical model of the system to be controlled. This intelligent method is compared with tracking method in the presence of measurement noise and model error. Simulation results show its superiority and feasibility.展开更多
基金the Research Grants Council of Hong Kong, P.R.China under Grant CUHK 4180/03E
文摘This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.
文摘Some existing methods for chaos control in engineering fields are analyzed and their drawbacks are pointed out. A tracking method can solve these problems to some extent, but it still depends on the mathematical model of the system to be controlled. An intelligent method based on fuzzy neural network (FNN) is used to control chaos in engineering fields. The FNN is employed to learn the inherent dynamics from the input and output of chaos, which can be used in the inverse system method, so that the method is free of the exact mathematical model of the system to be controlled. This intelligent method is compared with tracking method in the presence of measurement noise and model error. Simulation results show its superiority and feasibility.