Displays play an extremely important role in modern information society,which creates a never-ending demand for the new and better products and technologies.The latest requirements for novel display technologies focus...Displays play an extremely important role in modern information society,which creates a never-ending demand for the new and better products and technologies.The latest requirements for novel display technologies focus on high resolution and high color gamut.Among emerging technologies that include organic light-emitting diode(OL ED),micro light-emiting diode(micro-LED),quantum dot light-emitting diode(QLED),laser display,holographic display and others,QLED is promising owing to its intrinsic high color gamut and the possibility to achieve high resolution with photolithography approach.However,previously demonstrated photolthography techniques suffer from reduced device performance and color Impurities in subpixels from the process.In this study,we demonstrated a sacrificial layer assisted patterming(SLAP)approach,which can be applied in conjunction with photolithography to fabricate high-resolution,full-colo quantum dot(QD)patterns.In this approach,the negative photoresist(PR)and sacrificial layer(SL)were uilized to determine the pixels for QD deposition,while at the same time the SL helps protect the QD layer and keep it intact(named PR-SL approach).To prove this method's viability for QLED display manufacture,a 500-ppi,full-color passive matrix(PM)-QLED prototype was fabricated via this process.Results show that there were no color impurities in the subpixels,and the PM-QL ED has a high color gamut of 114%National Television Standards Committee(NTSC).To the best of our knowledge,this is the first ull-olor QLED prototype with such a high resolution.We anticipate that this innovative patteming technique will open a new horizon for future display technologies and may lead to a disruptive and innovative change in display industry.展开更多
Business processes often involve operational processes,contracts,and regulations.The modeling of such processes must address regulation monitoring and enforcement and maintain a reliable history of data for evidence.T...Business processes often involve operational processes,contracts,and regulations.The modeling of such processes must address regulation monitoring and enforcement and maintain a reliable history of data for evidence.This study proposes modeling business processes as chaincode(CC)on permissioned blockchains(BCs).The challenges encountered by the proposed approach are state synchronizations among distributed nodes(called authnodes)and realtime requirements.This study separates CC executions from the state management of multiple BCs and demonstrates the validity of the proposed approach with a payment authorization system at a Chinese bank.展开更多
The combinatorial optimization problem(COP),which aims to find the optimal solution in discrete space,is fundamental in various fields.Unfortunately,many COPs are NP-complete,and require much more time to solve as the...The combinatorial optimization problem(COP),which aims to find the optimal solution in discrete space,is fundamental in various fields.Unfortunately,many COPs are NP-complete,and require much more time to solve as the problem scale increases.Troubled by this,researchers may prefer fast methods even if they are not exact,so approximation algorithms,heuristic algorithms,and machine learning have been proposed.Some works proposed chaotic simulated annealing(CSA)based on the Hopfield neural network and did a good job.However,CSA is not something that current general-purpose processors can handle easily,and there is no special hardware for it.To efficiently perform CSA,we propose a software and hardware co-design.In software,we quantize the weight and output using appropriate bit widths,and then modify the calculations that are not suitable for hardware implementation.In hardware,we design a specialized processing-in-memory hardware architecture named COPPER based on the memristor.COPPER is capable of efficiently running the modified quantized CSA algorithm and supporting the pipeline further acceleration.The results show that COPPER can perform CSA remarkably well in both speed and energy.展开更多
基金This work was supported by the National Key R&D Program of China(No.2016YFB0401700).
文摘Displays play an extremely important role in modern information society,which creates a never-ending demand for the new and better products and technologies.The latest requirements for novel display technologies focus on high resolution and high color gamut.Among emerging technologies that include organic light-emitting diode(OL ED),micro light-emiting diode(micro-LED),quantum dot light-emitting diode(QLED),laser display,holographic display and others,QLED is promising owing to its intrinsic high color gamut and the possibility to achieve high resolution with photolithography approach.However,previously demonstrated photolthography techniques suffer from reduced device performance and color Impurities in subpixels from the process.In this study,we demonstrated a sacrificial layer assisted patterming(SLAP)approach,which can be applied in conjunction with photolithography to fabricate high-resolution,full-colo quantum dot(QD)patterns.In this approach,the negative photoresist(PR)and sacrificial layer(SL)were uilized to determine the pixels for QD deposition,while at the same time the SL helps protect the QD layer and keep it intact(named PR-SL approach).To prove this method's viability for QLED display manufacture,a 500-ppi,full-color passive matrix(PM)-QLED prototype was fabricated via this process.Results show that there were no color impurities in the subpixels,and the PM-QL ED has a high color gamut of 114%National Television Standards Committee(NTSC).To the best of our knowledge,this is the first ull-olor QLED prototype with such a high resolution.We anticipate that this innovative patteming technique will open a new horizon for future display technologies and may lead to a disruptive and innovative change in display industry.
基金supported by the National Natural Science Foundation of China(Grant No.61872011)Ministry of Education-China Mobile(MCM20170406).
文摘Business processes often involve operational processes,contracts,and regulations.The modeling of such processes must address regulation monitoring and enforcement and maintain a reliable history of data for evidence.This study proposes modeling business processes as chaincode(CC)on permissioned blockchains(BCs).The challenges encountered by the proposed approach are state synchronizations among distributed nodes(called authnodes)and realtime requirements.This study separates CC executions from the state management of multiple BCs and demonstrates the validity of the proposed approach with a payment authorization system at a Chinese bank.
基金Project supported by the National Natural Science Foundation of China(Nos.61832020,62032001,92064006,and 62274036)the Beijing Academy of Artificial Intelligence(BAAI)of Chinathe 111 Project of China(No.B18001)。
文摘The combinatorial optimization problem(COP),which aims to find the optimal solution in discrete space,is fundamental in various fields.Unfortunately,many COPs are NP-complete,and require much more time to solve as the problem scale increases.Troubled by this,researchers may prefer fast methods even if they are not exact,so approximation algorithms,heuristic algorithms,and machine learning have been proposed.Some works proposed chaotic simulated annealing(CSA)based on the Hopfield neural network and did a good job.However,CSA is not something that current general-purpose processors can handle easily,and there is no special hardware for it.To efficiently perform CSA,we propose a software and hardware co-design.In software,we quantize the weight and output using appropriate bit widths,and then modify the calculations that are not suitable for hardware implementation.In hardware,we design a specialized processing-in-memory hardware architecture named COPPER based on the memristor.COPPER is capable of efficiently running the modified quantized CSA algorithm and supporting the pipeline further acceleration.The results show that COPPER can perform CSA remarkably well in both speed and energy.