A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylben...A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures.展开更多
The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally19 scientific p...The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally19 scientific payloads, a multi-function furnace for 8 material researches and three-dimensional cell cultures for the neural stem cell and the hematopoietic stem cell respectively. The recoverable satellite consists mainly of two capsules: a recoverable capsule was recovered on 18 April 2016, with all payloads of life science, the multi-function furnace and the payload for measurement of Soret Coefficients of Crude Oil(SCCO); and an un-recoverable capsule continued to work in additional 3 days with all other physics payloads. The experiments were operated via teleoperations, and all experimental data were received by the ground station in real time.The data and recoverable samples are analyzed by the experiment teams of the program.展开更多
Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence,cognition,computer,and systems sciences.This paper explores the intelligent an...Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence,cognition,computer,and systems sciences.This paper explores the intelligent and mathematical foundations of autonomous systems.It focuses on structural and behavioral properties that constitute the intelligent power of autonomous systems.It explains how system intelligence aggregates from reflexive,imperative,adaptive intelligence to autonomous and cognitive intelligence.A hierarchical intelligence model(HIM)is introduced to elaborate the evolution of human and system intelligence as an inductive process.The properties of system autonomy are formally analyzed towards a wide range of applications in computational intelligence and systems engineering.Emerging paradigms of autonomous systems including brain-inspired systems,cognitive robots,and autonomous knowledge learning systems are described.Advances in autonomous systems will pave a way towards highly intelligent machines for augmenting human capabilities.展开更多
Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is ...Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is a complex four-electron transfer process and is kinetically sluggish. It is urgent to develop high-efficient electrocatalysts to solve this problem [11–15]. Up to now, precious metal-based catalysts such as Pt-based electrocatalysts have been widely studied and found to be one of the most efficient electrocatalysts for ORR. However, the high price and the small reserves limit their large-scale commercialization [10,16–23]. Therefore, in order to fulfill needs for the practical applications, it is necessary to develop low-cost electrocatalysts, also with high activity and great stability [19,24–28].展开更多
Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in...Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications.展开更多
Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extens...Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped C...A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped CrCoNi MEAs at similar yield strength levels.P segregation at grain boundaries(GBs)and dissolution inside grain interiors,together with the related lower stacking fault energy(SFE)are found in the P-doped CrCoNi MEA.Higher hetero-deformation-induced(HDI)hardening rate is observed in the P-doped CrCoNi MEA due to the grain-to-grain plastic deformation and the dynamic structural refinement by high-density stacking fault-walls(SFWs).The enhanced yield strength in the P-doped CoCrNi MEA can be attributed to the strong substitutional solid-solution strengthening by severer lattice distortion and the GB strengthening by phosphorus segregation at GBs.During the tensile deformation,the multiple SFW frames inundated with massive multi-orientational tiny planar stacking faults(SFs)between them,rather than deformation twins,are observed to induce dynamic structural refinement for forming par-allelepiped domains in the P-doped CoCrNi MEA,due to the lower SFE and even lower atomically-local SFE.These nano-sized domains with domain boundary spacing at tens of nanometers can block disloca-tion movement for strengthening on one hand,and can accumulate defects in the interiors of domains for exceptionally high hardening rate on the other hand.展开更多
In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance ...In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.展开更多
The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design m...The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.展开更多
Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temper...Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.展开更多
Research on the high maneuverability of fish swimming primarily involves addressing the batch processing of large experimental data,specifically how to simultaneously capture and rapidly process deformation-displaceme...Research on the high maneuverability of fish swimming primarily involves addressing the batch processing of large experimental data,specifically how to simultaneously capture and rapidly process deformation-displacement information of fish bodies and related flow fields.The primary objective of this study is to integrate high-speed photography technology with deep learning methods to propose a set of data processing methods suitable for extracting fish swimming characteristic parameters.For the rapid movements of zebrafish(millisecond-level motion),this study utilized a high-speed camera for image acquisition,obtaining batches of swimming fish images and fluorescence particle information in the flow field.The geometric reconstruction of zebrafish under high-speed swimming was achieved by introducing deep learning algorithms and refining the U-Net model.To tackle the challenges of complex fish swimming scenes,we utilized a novel residual connection approach(path modification)and constructed a hybrid function model(module enhancement),resulting in a new neural network model tailored for zebrafish swimming image processing:Mod-UNet.Through testing,the improved Mod-UNet model effectively eliminated interference from fluorescence particles in the flow field on the extraction of fish body contours,achieving an overall IoU coefficient of 93%.The processing results demonstrated a kind of consistency compared to results obtained with traditional methods by previous researchers.By calculating the geometric morphology of zebrafish,we further derived the kinematic characteristics of zebrafish.Simultaneously,by applying cross-correlation algorithms to calculate the positions of fluorescence particles,the velocity characteristics of the flow field were obtained.The λ ci method and the Ω method were used to identify vortex structures,providing the evolution patterns of corresponding flow field characteristic parameters.The experimental data processing method proposed in this paper provides technical support for establishing a zebrafish swimming information database.展开更多
The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c...The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.展开更多
To meet the demand for air-breathing power for wide-range vehicles at Mach 0–10,two thermal cycles with ammonia as the fuel and coolant were analyzed,namely the precooled rocket-turbine cycle(PC-RT)and the precooled ...To meet the demand for air-breathing power for wide-range vehicles at Mach 0–10,two thermal cycles with ammonia as the fuel and coolant were analyzed,namely the precooled rocket-turbine cycle(PC-RT)and the precooled gas-turbine cycle.Firstly,the operating modes of the precooled cycle engines were divided into turbine mode,precooling mode,and ramjet mode.Secondly,a fluid-structure coupling heat transfer program was used to evaluate the cooling effects of different fuels on the incoming high-temperature air.The result shows that the equivalent heat sink of ammonia is higher than that of other fuels and can meet the cooling requirement of at least Mach 4 in the precooling mode.Thirdly,the performance of the PC-RT in the turbine and precooling modes was compared at Mach 2.5.The result shows that air precooling alleviates the restriction of the pumping pressure on the minimum requiredβand improves the specific thrust within a reasonable range ofβ.Fourthly,the performance of the precooled cycle engines was compared when using different fuels.The result shows that the specific thrust of ammonia is greater than that of other fuels,and the performance advantages of ammonia are the most obvious in the precooling mode due to its highest equivalent heat sink.To sum up,the precooled cycle engines with ammonia as the fuel and coolant presented in this study have the advantages of no carbon emissions,low cost,high specific thrust,and no clogging of the cooling channels by cracking products.They are suitable for applications such as the first-stage power of the two-stage vehicle,and high Mach numbers air-breathing flight.展开更多
Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this stud...Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation.展开更多
In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in c...In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in co-sputtering manner to synthesize the TbAl coatings with certain Tb consumption and various Al addition amount.Results show that the moderate Al addition amount significantly improves the wettability of grain boundary(GB)phases,thereby acquiring more continuous and uniform Tb-rich shells and GB phases between matrix phases,as well as deeper diffusion depth and denser microstructure.The largest increase amplitude of intrinsic coercivity(Hcj)is improved by 78.4%in TbAIdiffused magnet compared to the pure Tb-diffused magnet,while the remanence(Br)is expected to show an overall decreasing tendency accompanied with a slight increase in the decreasing process.However,when the Al addition amount is excessive,magnetic dilution effect is enhanced,and the Tbrich shells and GB phases between matrix phases become fuzzy and even invisible,which in turn deteriorates the magnetic properties of diffused magnets.展开更多
The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networ...The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method.展开更多
Direct numerical simulations have been conducted to investigate the evolution process of liquid metal laminar to turbulent flow in a rectangular duct under the influence of a non-uniform magnetic field.The Reynolds nu...Direct numerical simulations have been conducted to investigate the evolution process of liquid metal laminar to turbulent flow in a rectangular duct under the influence of a non-uniform magnetic field.The Reynolds number is Re=6299,and the inlet Hartmann number is Ha=2900,with the magnetic field strength decreasing along the flow direction.The results indicate that the dynamic reversal of the three-dimensional(3D)Lorentz force direction near the inflection point of the magnetic field dominates the flow reconstruction,driving the wall jet acceleration and forming an M-type velocity distribution.Moreover,the high-speed shear layer of the jet triggers Kelvin-Helmholtz instability,resulting in the generation of secondary vortex structures near the parallel layer in the non-uniform magnetic field region.In the cross-section perpendicular to the flow direction,the secondary flow gradually evolves into a four-vortex structure,while the velocity fluctuations and turbulent kinetic energy reach the peak.Based on the characteristics of the vortex rotation direction near the shear layer,the intrinsic mechanism behind the unique bimodal distribution of the root-mean-square of velocity fluctuations in the parallel layers is revealed.Furthermore,by comparing the evolution of turbulence under different magnetic field gradients,it is revealed that the distributions of shear stress,Reynolds stress,and turbulent kinetic energy exhibit significant parameter dependence.The strong 3D magnetohydrodynamic effects at the magnetic field gradientγ=0.6 have an immediate impact on the pressure distribution.The transverse Lorentz force LFz further promotes the fluid to accumulate at the wall,leading to a significant increase in the pressure drop and transverse pressure difference in the flow.展开更多
The consistency of the dynamic behavior of the mechanical equivalent model of high-speed pantographs with that of actual high-speed pantographs under service conditions is crucial for the correctness and accuracy of t...The consistency of the dynamic behavior of the mechanical equivalent model of high-speed pantographs with that of actual high-speed pantographs under service conditions is crucial for the correctness and accuracy of the numerical simulation results of the pantograph-catenary interaction.Firstly,based on experimental data and the finite element method,models of a mass-point frame and reduced pan head were established,which can simulate the rolling and pitching motion characteristics of the dual-strip pan head.The correctness of the finite element numerical simulation of the pantograph-catenary system based on the model was verified through an industry standard and line tests.Then,the variation law of the standard deviation of the contact force(SDCF)in the speed range of 240-450 km/h was studied,and the mechanism of large fluctuation in SDCF was explained from the perspective of pantograph-catenary resonance.Finally,the influence of pan head degree of freedom and low-pass filtering frequency of the contact force time-domain signal on SDCF was studied,and the applicable speed level of the traditional three-mass model and 20 Hz filtering were provided.展开更多
In the novel fully dry converter gas recovery process,a novel circumfluent cyclone separator with an evaporation heating surface can simultaneously realize the dust removal and sensible heat recovery of converter gas....In the novel fully dry converter gas recovery process,a novel circumfluent cyclone separator with an evaporation heating surface can simultaneously realize the dust removal and sensible heat recovery of converter gas.For this equipment,the distributions of internal flow and wall heat transfer affect the efficiency of dust removal and sensible heat recovery.In this study,based on on-site operation tests,the distributions of internal flow and wall heat transfer in the circumfluent cyclone separator are studied by numerical simulation.The results indicate that the flow rate proportions in different regions of the circumfluent cyclone separator remain constant during the steelmaking process,approximately 80.1%of the converter gas flows through the cone chamber,and 15.4%of the converter gas flows through the annular chamber.The heat transfer rate proportions on the walls of different regions of the circumfluent cyclone separator remain constant during the steelmaking process,and the heat transfer rate proportions on the walls of the cone chamber,straight shell,shell head and outlet pipe are 40.2%,27.0%,17.6%and 15.2%,respectively.展开更多
文摘A molecular [Ru(bda)]-type(bda = 2,2’-bipyridine-6,6’-dicarboxylate) water oxidation catalyst with 4-vinylpyridine as the axial ligand(Complex 1) was immobilized or co-immobilized with 1-(trifluoromethyl)-4-vinylbenzene(3 F) or styrene(St) blocking units on the surface of glassy carbon(GC) electrodes by electrochemical polymerization, in order to prepare the corresponding poly-1@GC, poly-1+P3 F@GC, and poly-1+PSt@GC functional electrodes. Kinetic measurements of the electrode surface reaction revealed that [Ru(bda)] triggers the O–O bond formation via(1) the radical coupling interaction between the two metallo-oxyl radicals(I2 M) in the homo-coupling polymer(poly-1), and(2) the water nucleophilic attack(WNA) pathway in poly-1+P3 F and poly-1+PSt copolymers. The comparison of the three electrodes revealed that the second coordination sphere of the water oxidation catalysts plays vital roles in stabilizing their reaction intermediates, tuning the O–O bond formation pathways and improving the water oxidation reaction kinetics without changing the first coordination structures.
文摘The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally19 scientific payloads, a multi-function furnace for 8 material researches and three-dimensional cell cultures for the neural stem cell and the hematopoietic stem cell respectively. The recoverable satellite consists mainly of two capsules: a recoverable capsule was recovered on 18 April 2016, with all payloads of life science, the multi-function furnace and the payload for measurement of Soret Coefficients of Crude Oil(SCCO); and an un-recoverable capsule continued to work in additional 3 days with all other physics payloads. The experiments were operated via teleoperations, and all experimental data were received by the ground station in real time.The data and recoverable samples are analyzed by the experiment teams of the program.
基金supported in part by the Department of National Defence’s Innovation for Defence Excellence and Security(IDEa S)Program,Canadathrough the Project of Auto Defence Towards Trustworthy Technologies for Autonomous Human-Machine Systems,NSERCthe IEEE SMC Society Technical Committee on Brain-Inspired Systems(TCBCS)。
文摘Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence,cognition,computer,and systems sciences.This paper explores the intelligent and mathematical foundations of autonomous systems.It focuses on structural and behavioral properties that constitute the intelligent power of autonomous systems.It explains how system intelligence aggregates from reflexive,imperative,adaptive intelligence to autonomous and cognitive intelligence.A hierarchical intelligence model(HIM)is introduced to elaborate the evolution of human and system intelligence as an inductive process.The properties of system autonomy are formally analyzed towards a wide range of applications in computational intelligence and systems engineering.Emerging paradigms of autonomous systems including brain-inspired systems,cognitive robots,and autonomous knowledge learning systems are described.Advances in autonomous systems will pave a way towards highly intelligent machines for augmenting human capabilities.
基金supported by the National Natural Science Foundation of China(Grant No.21975148,21601118,21773146,21902099,and 21905167)the Fundamental Research Funds for the Central Universities(GK201903033 and GK202003025)+5 种基金the “Thousand Talents Program”of Chinathe Fok Ying-Tong Education Foundation for Outstanding Young Teachers in Universitythe China Postdoctoral Science Foundation(2019M650254,and 2020T130391)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLOP202002005)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Provincethe Research Funds of Shaanxi Normal University。
文摘Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is a complex four-electron transfer process and is kinetically sluggish. It is urgent to develop high-efficient electrocatalysts to solve this problem [11–15]. Up to now, precious metal-based catalysts such as Pt-based electrocatalysts have been widely studied and found to be one of the most efficient electrocatalysts for ORR. However, the high price and the small reserves limit their large-scale commercialization [10,16–23]. Therefore, in order to fulfill needs for the practical applications, it is necessary to develop low-cost electrocatalysts, also with high activity and great stability [19,24–28].
文摘Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications.
基金funded by the National Natural Science Foundation of China(42372334)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G05)。
文摘Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金supported by the National Key R&D Program of China(No.2019YFA0209902)the Natural Science Foundation of China(Nos.52071326,52192593,51601204)+1 种基金the NSFC Basic Science Center Program for Multiscale Problems in Nonlinear Mechanics(No.11988102)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040503).
文摘A newly developed P-doped CrCoNi medium-entropy alloy(MEA)provides both higher yield strength and larger uniform elongation than the conventional CrCoNi MEA,even superior tensile ductility to the other-element-doped CrCoNi MEAs at similar yield strength levels.P segregation at grain boundaries(GBs)and dissolution inside grain interiors,together with the related lower stacking fault energy(SFE)are found in the P-doped CrCoNi MEA.Higher hetero-deformation-induced(HDI)hardening rate is observed in the P-doped CrCoNi MEA due to the grain-to-grain plastic deformation and the dynamic structural refinement by high-density stacking fault-walls(SFWs).The enhanced yield strength in the P-doped CoCrNi MEA can be attributed to the strong substitutional solid-solution strengthening by severer lattice distortion and the GB strengthening by phosphorus segregation at GBs.During the tensile deformation,the multiple SFW frames inundated with massive multi-orientational tiny planar stacking faults(SFs)between them,rather than deformation twins,are observed to induce dynamic structural refinement for forming par-allelepiped domains in the P-doped CoCrNi MEA,due to the lower SFE and even lower atomically-local SFE.These nano-sized domains with domain boundary spacing at tens of nanometers can block disloca-tion movement for strengthening on one hand,and can accumulate defects in the interiors of domains for exceptionally high hardening rate on the other hand.
基金supported by the National Natural Science Foundation of China(Grant No.12272369)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0620101).
文摘In recent decades,capacitive pressure sensors(CPSs)with high sensitivity have demonstrated significant potential in applications such as medical monitoring,artificial intelligence,and soft robotics.Efforts to enhance this sensitivity have predominantly focused on material design and structural optimization,with surface microstructures such as wrinkles,pyramids,and micro-pillars proving effective.Although finite element modeling(FEM)has guided enhancements in CPS sensitivity across various surface designs,a theoretical understanding of sensitivity improvements remains underexplored.This paper employs sinusoidal wavy surfaces as a representative model to analytically elucidate the underlying mechanisms of sensitivity enhancement through contact mechanics.These theoretical insights are corroborated by FEM and experimental validations.Our findings underscore that optimizing material properties,such as Young’s modulus and relative permittivity,alongside adjustments in surface roughness and substrate thickness,can significantly elevate the sensitivity.The optimal performance is achieved when the amplitude-to-wavelength ratio(H/)is about 0.2.These results offer critical insights for designing ultrasensitive CPS devices,paving the way for advancements in sensor technology.
基金supported by the National Key R&D Program of China(Grant No.2021YFC2501700).
文摘The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head.
基金supported by the National Natural Science Foundation of China(52106276 and 52130601).
文摘Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.
基金Project supported by the National Natural Science Foundation of China(Grant No.12172355)the Fundamental Research Funds for the Central Universities(Grant Nos.E1E42201,E3E42203).
文摘Research on the high maneuverability of fish swimming primarily involves addressing the batch processing of large experimental data,specifically how to simultaneously capture and rapidly process deformation-displacement information of fish bodies and related flow fields.The primary objective of this study is to integrate high-speed photography technology with deep learning methods to propose a set of data processing methods suitable for extracting fish swimming characteristic parameters.For the rapid movements of zebrafish(millisecond-level motion),this study utilized a high-speed camera for image acquisition,obtaining batches of swimming fish images and fluorescence particle information in the flow field.The geometric reconstruction of zebrafish under high-speed swimming was achieved by introducing deep learning algorithms and refining the U-Net model.To tackle the challenges of complex fish swimming scenes,we utilized a novel residual connection approach(path modification)and constructed a hybrid function model(module enhancement),resulting in a new neural network model tailored for zebrafish swimming image processing:Mod-UNet.Through testing,the improved Mod-UNet model effectively eliminated interference from fluorescence particles in the flow field on the extraction of fish body contours,achieving an overall IoU coefficient of 93%.The processing results demonstrated a kind of consistency compared to results obtained with traditional methods by previous researchers.By calculating the geometric morphology of zebrafish,we further derived the kinematic characteristics of zebrafish.Simultaneously,by applying cross-correlation algorithms to calculate the positions of fluorescence particles,the velocity characteristics of the flow field were obtained.The λ ci method and the Ω method were used to identify vortex structures,providing the evolution patterns of corresponding flow field characteristic parameters.The experimental data processing method proposed in this paper provides technical support for establishing a zebrafish swimming information database.
基金Project supported by the National Natural Science Foundation of China(Nos.12241205 and 12032019)the National Key Research and Development Program of China(No.2022YFA1203200)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB0620101 and XDB0620103)。
文摘The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.
基金This work was supported by the High-level Innovative Research Institute from the Department of Science and Technology of Guangdong Province(Grant No.2020B0909010003)the Ministry of Education of China(Grant No.8091B02052401).
文摘To meet the demand for air-breathing power for wide-range vehicles at Mach 0–10,two thermal cycles with ammonia as the fuel and coolant were analyzed,namely the precooled rocket-turbine cycle(PC-RT)and the precooled gas-turbine cycle.Firstly,the operating modes of the precooled cycle engines were divided into turbine mode,precooling mode,and ramjet mode.Secondly,a fluid-structure coupling heat transfer program was used to evaluate the cooling effects of different fuels on the incoming high-temperature air.The result shows that the equivalent heat sink of ammonia is higher than that of other fuels and can meet the cooling requirement of at least Mach 4 in the precooling mode.Thirdly,the performance of the PC-RT in the turbine and precooling modes was compared at Mach 2.5.The result shows that air precooling alleviates the restriction of the pumping pressure on the minimum requiredβand improves the specific thrust within a reasonable range ofβ.Fourthly,the performance of the precooled cycle engines was compared when using different fuels.The result shows that the specific thrust of ammonia is greater than that of other fuels,and the performance advantages of ammonia are the most obvious in the precooling mode due to its highest equivalent heat sink.To sum up,the precooled cycle engines with ammonia as the fuel and coolant presented in this study have the advantages of no carbon emissions,low cost,high specific thrust,and no clogging of the cooling channels by cracking products.They are suitable for applications such as the first-stage power of the two-stage vehicle,and high Mach numbers air-breathing flight.
基金financially supported by the National Key R&D Program of China(Grant No.2023YFC3081200)the National Natural Science Foundation of China(Grant Nos.U21A20159 and 52179117).
文摘Contact detection is the most time-consuming stage in 3D discontinuous deformation analysis(3D-DDA)computation.Improving the efficiency of 3D-DDA is beneficial for its application in large-scale computing.In this study,aiming at the continuous-discontinuous simulation of 3D-DDA,a highly efficient contact detection strategy is proposed.Firstly,the global direct search(GDS)method is integrated into the 3D-DDA framework to address intricate contact scenarios.Subsequently,all geometric elements,including blocks,faces,edges,and vertices are divided into searchable and unsearchable parts.Contacts between unsearchable geometric elements would be directly inherited,while only searchable geometric elements are involved in contact detection.This strategy significantly reduces the number of geometric elements involved in contact detection,thereby markedly enhancing the computation efficiency.Several examples are adopted to demonstrate the accuracy and efficiency of the improved 3D-DDA method.The rock pillars with different mesh sizes are simulated under self-weight.The deformation and stress are consistent with the analytical results,and the smaller the mesh size,the higher the accuracy.The maximum speedup ratio is 38.46 for this case.Furthermore,the Brazilian splitting test on the discs with different flaws is conducted.The results show that the failure pattern of the samples is consistent with the results obtained by other methods and experiments,and the maximum speedup ratio is 266.73.Finally,a large-scale impact test is performed,and approximately 3.2 times enhanced efficiency is obtained.The proposed contact detection strategy significantly improves efficiency when the rock has not completely failed,which is more suitable for continuous-discontinuous simulation.
基金Project supported by National Key Research and Development Program of China(2021YFB3500100)National Natural Science Foundation of China(52301068)。
文摘In this work,the effect of the Al addition amount in the TbAl coatings on the grain boundary diffusion proces s(GBDP)of Tb were systematically explored.Direct current magnetron sputtering(DCMS)method was utilized in co-sputtering manner to synthesize the TbAl coatings with certain Tb consumption and various Al addition amount.Results show that the moderate Al addition amount significantly improves the wettability of grain boundary(GB)phases,thereby acquiring more continuous and uniform Tb-rich shells and GB phases between matrix phases,as well as deeper diffusion depth and denser microstructure.The largest increase amplitude of intrinsic coercivity(Hcj)is improved by 78.4%in TbAIdiffused magnet compared to the pure Tb-diffused magnet,while the remanence(Br)is expected to show an overall decreasing tendency accompanied with a slight increase in the decreasing process.However,when the Al addition amount is excessive,magnetic dilution effect is enhanced,and the Tbrich shells and GB phases between matrix phases become fuzzy and even invisible,which in turn deteriorates the magnetic properties of diffused magnets.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072340)the Chinese Scholarship Council and the Australia Research Council through a linkage project fund。
文摘The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method.
基金supported by the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-087)and the National Key R&D Program of China(Grant No.2022YFA1204100)。
文摘Direct numerical simulations have been conducted to investigate the evolution process of liquid metal laminar to turbulent flow in a rectangular duct under the influence of a non-uniform magnetic field.The Reynolds number is Re=6299,and the inlet Hartmann number is Ha=2900,with the magnetic field strength decreasing along the flow direction.The results indicate that the dynamic reversal of the three-dimensional(3D)Lorentz force direction near the inflection point of the magnetic field dominates the flow reconstruction,driving the wall jet acceleration and forming an M-type velocity distribution.Moreover,the high-speed shear layer of the jet triggers Kelvin-Helmholtz instability,resulting in the generation of secondary vortex structures near the parallel layer in the non-uniform magnetic field region.In the cross-section perpendicular to the flow direction,the secondary flow gradually evolves into a four-vortex structure,while the velocity fluctuations and turbulent kinetic energy reach the peak.Based on the characteristics of the vortex rotation direction near the shear layer,the intrinsic mechanism behind the unique bimodal distribution of the root-mean-square of velocity fluctuations in the parallel layers is revealed.Furthermore,by comparing the evolution of turbulence under different magnetic field gradients,it is revealed that the distributions of shear stress,Reynolds stress,and turbulent kinetic energy exhibit significant parameter dependence.The strong 3D magnetohydrodynamic effects at the magnetic field gradientγ=0.6 have an immediate impact on the pressure distribution.The transverse Lorentz force LFz further promotes the fluid to accumulate at the wall,leading to a significant increase in the pressure drop and transverse pressure difference in the flow.
基金supported by the Major Project of China Railway Co.,Ltd.(Grant No.K2021J004-A)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22020201)。
文摘The consistency of the dynamic behavior of the mechanical equivalent model of high-speed pantographs with that of actual high-speed pantographs under service conditions is crucial for the correctness and accuracy of the numerical simulation results of the pantograph-catenary interaction.Firstly,based on experimental data and the finite element method,models of a mass-point frame and reduced pan head were established,which can simulate the rolling and pitching motion characteristics of the dual-strip pan head.The correctness of the finite element numerical simulation of the pantograph-catenary system based on the model was verified through an industry standard and line tests.Then,the variation law of the standard deviation of the contact force(SDCF)in the speed range of 240-450 km/h was studied,and the mechanism of large fluctuation in SDCF was explained from the perspective of pantograph-catenary resonance.Finally,the influence of pan head degree of freedom and low-pass filtering frequency of the contact force time-domain signal on SDCF was studied,and the applicable speed level of the traditional three-mass model and 20 Hz filtering were provided.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant Number XDA29020503.
文摘In the novel fully dry converter gas recovery process,a novel circumfluent cyclone separator with an evaporation heating surface can simultaneously realize the dust removal and sensible heat recovery of converter gas.For this equipment,the distributions of internal flow and wall heat transfer affect the efficiency of dust removal and sensible heat recovery.In this study,based on on-site operation tests,the distributions of internal flow and wall heat transfer in the circumfluent cyclone separator are studied by numerical simulation.The results indicate that the flow rate proportions in different regions of the circumfluent cyclone separator remain constant during the steelmaking process,approximately 80.1%of the converter gas flows through the cone chamber,and 15.4%of the converter gas flows through the annular chamber.The heat transfer rate proportions on the walls of different regions of the circumfluent cyclone separator remain constant during the steelmaking process,and the heat transfer rate proportions on the walls of the cone chamber,straight shell,shell head and outlet pipe are 40.2%,27.0%,17.6%and 15.2%,respectively.