Targeted genotyping is an extremely powerful approach for the detection of known genetic variations that are biologically or clinically important.However,for non-model organisms,large-scale target geno-typing in a cos...Targeted genotyping is an extremely powerful approach for the detection of known genetic variations that are biologically or clinically important.However,for non-model organisms,large-scale target geno-typing in a cost-effective manner remains a major challenge.To address this issue,we present an ultrahigh-multiplex,in-solution probe array-based high-throughput diverse marker genotyping(HD-Marker)approach that is capable of targeted genotyping of up to 86000 loci,with coverage of the whole gene repertoire,in what is a 27-fold and six-fold multiplex increase in comparison with the conventional Illumina GoldenGate and original HD-Marker assays,respectively.We perform extensive analyses of var-ious ultrahigh-multiplex levels of HD-Marker(30 k-plex,56 k-plex,and 86 k-plex)and show the power and excellent performance of the proposed method with an extremely high capture rate(about 96%)and genotyping accuracy(about 96%).With great advantages in terms of cost(as low as 0.0006 USD per geno-type)and high technical flexibility,HD-Marker is a highly efficient and powerful tool with broad appli-cation potential for genetic,ecological,and evolutionary studies of non-model organisms.展开更多
There was a mistake in affiliation a,the correct one should be“MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Center,Ocean University of China,Qingdao 266003,China”as updated above;Affiliations c a...There was a mistake in affiliation a,the correct one should be“MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Center,Ocean University of China,Qingdao 266003,China”as updated above;Affiliations c and d should be reversed:Affiliation c should be“Laboratory for Marine Fisheries Science and Food Production Processes,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China,”and the affiliation d should be“Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering,Sanya Oceanographic Institution,Ocean University of China,Sanya 572000,China.”展开更多
Actin is a ubiquitous protein and plays essential roles on cellular structure maintenance and cellular motility in both muscle and non-muscle tissues.Multiple genes encoding muscle actin have been identified from the ...Actin is a ubiquitous protein and plays essential roles on cellular structure maintenance and cellular motility in both muscle and non-muscle tissues.Multiple genes encoding muscle actin have been identified from the ascidians,including those expressed in the larval tail muscle,the adult body-wall muscle,and adult heart muscle.In this study,a novel striated non-tail muscle actin gene was identified from the RNA-seq data of Ciona savignyi embryos.Phylogenetic analysis,alignment of the N-terminal amino acid sequences and comparation of diagnostic residues provided evidence that it had high similarity with vertebrate cardiac and skeletal muscle actin.In situ hybridization and promoter-driven GFP reporter assay revealed that it was specifically expressed in the primordia of the oral and atrial siphon.We hereby defined it as siphon-specific muscle actin coding gene(Cs-SMA).A 201 bp(−1350 bp to−1150 bp)sequence containing T-box and Six1/2 binding motif within the upstream region of Cs-SMA confined the expression of GFP in the siphons of electroporated embryos.Six1/2 binding motif was experimentally confirmed to play indispensable role in controlling the siphon-specific expression of Cs-SMA.The tissue-specific expression of Cs-SMA in the siphon primordia indicated its potential crucial roles in Ciona embryogenesis and organogenesis.展开更多
基金the grant support from National Natural Science Foundation of China (32130107, 32002446 and 32102778)Project of Sanya Yazhouwan Science and Technology City Management Foundation (SKJC-KJ-2019KY01)+1 种基金China Agriculture Research System of MOF and MARATaishan Scholar Project Fund of Shandong Province of China
文摘Targeted genotyping is an extremely powerful approach for the detection of known genetic variations that are biologically or clinically important.However,for non-model organisms,large-scale target geno-typing in a cost-effective manner remains a major challenge.To address this issue,we present an ultrahigh-multiplex,in-solution probe array-based high-throughput diverse marker genotyping(HD-Marker)approach that is capable of targeted genotyping of up to 86000 loci,with coverage of the whole gene repertoire,in what is a 27-fold and six-fold multiplex increase in comparison with the conventional Illumina GoldenGate and original HD-Marker assays,respectively.We perform extensive analyses of var-ious ultrahigh-multiplex levels of HD-Marker(30 k-plex,56 k-plex,and 86 k-plex)and show the power and excellent performance of the proposed method with an extremely high capture rate(about 96%)and genotyping accuracy(about 96%).With great advantages in terms of cost(as low as 0.0006 USD per geno-type)and high technical flexibility,HD-Marker is a highly efficient and powerful tool with broad appli-cation potential for genetic,ecological,and evolutionary studies of non-model organisms.
文摘There was a mistake in affiliation a,the correct one should be“MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Center,Ocean University of China,Qingdao 266003,China”as updated above;Affiliations c and d should be reversed:Affiliation c should be“Laboratory for Marine Fisheries Science and Food Production Processes,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China,”and the affiliation d should be“Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering,Sanya Oceanographic Institution,Ocean University of China,Sanya 572000,China.”
基金funded by the National Key Research and Development Program of China(Nos.2019YFE0190900,2018YFD0900705).
文摘Actin is a ubiquitous protein and plays essential roles on cellular structure maintenance and cellular motility in both muscle and non-muscle tissues.Multiple genes encoding muscle actin have been identified from the ascidians,including those expressed in the larval tail muscle,the adult body-wall muscle,and adult heart muscle.In this study,a novel striated non-tail muscle actin gene was identified from the RNA-seq data of Ciona savignyi embryos.Phylogenetic analysis,alignment of the N-terminal amino acid sequences and comparation of diagnostic residues provided evidence that it had high similarity with vertebrate cardiac and skeletal muscle actin.In situ hybridization and promoter-driven GFP reporter assay revealed that it was specifically expressed in the primordia of the oral and atrial siphon.We hereby defined it as siphon-specific muscle actin coding gene(Cs-SMA).A 201 bp(−1350 bp to−1150 bp)sequence containing T-box and Six1/2 binding motif within the upstream region of Cs-SMA confined the expression of GFP in the siphons of electroporated embryos.Six1/2 binding motif was experimentally confirmed to play indispensable role in controlling the siphon-specific expression of Cs-SMA.The tissue-specific expression of Cs-SMA in the siphon primordia indicated its potential crucial roles in Ciona embryogenesis and organogenesis.