The Square Kilometre Array(SKA)has the potential to revolutionize astronomical research through its unparalleled precision.A critical aspect of SKA imaging is the computation of the UVW coordinates,which must be accur...The Square Kilometre Array(SKA)has the potential to revolutionize astronomical research through its unparalleled precision.A critical aspect of SKA imaging is the computation of the UVW coordinates,which must be accurate and reliable for the development of the SKA scientific data processor.Katpoint is the current method used to calculate UVW in Meer KAT.Using a pseudo-source,we employ a simple cross-product method to determine UVWs.In this study,we explore the applicability of Katpoint for SKA1-low and SKA1-mid and evaluate its precision.The conventional method,CALC/Omni UV,and Katpoint were quantitatively assessed through simulations.The results indicate that Katpoint exhibits substantial accuracy with MeerKAT compared to traditional techniques.However,its precision is slightly inadequate for the long baselines of SKA1.We improved the precision of Katpoint by identifying optimal offset values for pseudo-sources on the SKA1 telescope through simulation,finding a 0°.11 offset suitable for SKA1-Mid and a 0°.045 offset for SKA1-Low.Final result validations demonstrate that these adjustments render the computational accuracy fully comparable to the standard CALC/Omni UV method,which would meet the requirements of SKA high-precision imaging and offer a solution for high-precision imaging in radio interferometers.展开更多
The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling sola...The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events.展开更多
By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the ...By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.展开更多
Spinel compounds are of great interest in both fundamental and application-oriented perspectives due to the geometric magnetic frustration inherent to their lattice and the resulting complex magnetic states.Here,we ap...Spinel compounds are of great interest in both fundamental and application-oriented perspectives due to the geometric magnetic frustration inherent to their lattice and the resulting complex magnetic states.Here,we applied x-ray diffraction,magnetization,heat capacity and powder inelastic neutron scattering measurements,along with theoretical calculations,to study the exotic properties of chromite-spinel oxides CoCr_(2)O_(4) and MnCr_(2)O_(4).The temperature dependence of the phonon spectra provides an insight into the correlation between oxygen motion and the magnetic order,as well as the magnetoelectric effect in the ground state of MnCr_(2)O_(4).Moreover,spin-wave excitations in CoCr_(2)O_(4) and MnCr_(2)O_(4) are compared with Heisenberg model calculations.This approach enables the precise determination of exchange energies and offers a comprehensive understanding of the spin dynamics and relevant exchange interactions in complicated spiral spin ordering.展开更多
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft ...We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model.We find that most emitted ions are thermal,but that some impurities chemisorbed on the target surface,such as protons,are accelerated by the electrostatic field created in the plasma by escaped electrons.The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures.We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.展开更多
Eurofer97 steel is a primary structural material for applications in fusion reactors. Laser welding is a promising technique to join Eurofer97 plasma-facing components and overcome remote handling and maintenance chal...Eurofer97 steel is a primary structural material for applications in fusion reactors. Laser welding is a promising technique to join Eurofer97 plasma-facing components and overcome remote handling and maintenance challenges. The interaction of the induced residual stress and the heterogeneous microstructure degrades the mechanical performance of such fusion components. The present study investigates the distribution of residual stress in as-welded and post-heat treated Eurofer97 joints. The mechanistic connections between microstructure, material properties, and residual stress are also studied. Neutron diffraction is used to study the through-thickness residual stress distribution in three directions,and neutron Bragg edge imaging(NBEI) is applied to study the residual strain in high spatial resolution.The microstructures and micro-hardness are characterised by electron backscatter diffraction and nanoindentation, respectively. The M-shaped residual stress distribution through the thickness of the as-welded weldment is observed by neutron diffraction line scans over a region of 1.41 × 10 mm^(2). These profiles are cross-validated over a larger area(∼56 × 40 mm^(2)) with the higher spatial resolution by NBEI. The micro-hardness value in the fusion zone of the as-welded sample almost doubles from 2.75 ± 0.09 GPa to 5.06 ± 0.29 GPa due to a combination of residual stress and cooling-induced martensite. Conventional post weld heat treatment(PWHT) is shown to release ∼90% of the residual stress but not fully restore the microstructure. By comparing its hardness with that of stress-free samples, it is found that the microstructure is the primary contribution to the hardening. This study provides insight into the prediction of structural integrity for critical structural components of fusion reactors.展开更多
An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A ...An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.展开更多
X-ray absorption spectroscopy is a well-accepted diagnostic for experimental studies of warm dense matter.It requires a short-lived X-ray source of sufficiently high emissivity and without characteristic lines in the ...X-ray absorption spectroscopy is a well-accepted diagnostic for experimental studies of warm dense matter.It requires a short-lived X-ray source of sufficiently high emissivity and without characteristic lines in the spectral range of interest.In the present work,we discuss how to choose an optimum material and thickness to get a bright source in the wavelength range 2A–6A(∼2 keV to 6 keV)by considering relatively low-Z elements.We demonstrate that the highest emissivity of solid aluminum and silicon foil targets irradiated with a 1-ps high-contrast sub-kJ laser pulse is achieved when the target thickness is close to 10μm.An outer plastic layer can increase the emissivity even further.展开更多
The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be...The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).展开更多
The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is ty...The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is typically on structure solution. The research proposes a lightweight powder diffraction visualization program with the capability of fast rendering to compare powder data sets. Based on the success of the earlier version and user requests, Jpowder has been extended to display powder diffraction datasets using stack plot, which options to use meta-data for crystallographic powder diffraction data in XML format. Such stack plots allows crystallographers to identify phase transitions in materials.展开更多
Time reversal symmetry(TRS)is a key symmetry for classification of unconventional superconductors,and the violation of TRS often results in a wealth of novel properties.Here we report the synthesis and superconducting...Time reversal symmetry(TRS)is a key symmetry for classification of unconventional superconductors,and the violation of TRS often results in a wealth of novel properties.Here we report the synthesis and superconducting properties of the partially filled skutterudite Pr1-δPt4Ge12.The results from x-ray diffraction and magnetization measurements show that the[Pt4 Ge12]cage-forming structure survives and bulk superconductivity is preserved below the superconducting transition temperature Tc = 7.80 K.The temperature dependence of both the upper critical field and the electronic specific heat can be described in terms of a two-gap model,providing strong evidence of multi-band superconductivity.TRS breaking is observed using zero Held muon-spin relaxation experiments,and the magnitude of the spontaneous field is nearly half of that in PrPt4Ge12.展开更多
The structure and magnetic properties of rare-earth ions Tm^(3+)Kagomé lattice Tm_(3)Sb_(3)Mg_(2)O_(14)are studied by x-ray diffraction,magnetic susceptibility and muon spin relaxation(𝜇SR)experiments.The...The structure and magnetic properties of rare-earth ions Tm^(3+)Kagomé lattice Tm_(3)Sb_(3)Mg_(2)O_(14)are studied by x-ray diffraction,magnetic susceptibility and muon spin relaxation(𝜇SR)experiments.The existence of a small amount of Tm/Mg site-mixing disorder is revealed.DC magnetic susceptibility measurement shows that Tm^(3+)magnetic moments are antiferromagnetically correlated with a negative Curie-Weiss temperature of−26.3 K.Neither long-range magnetic order nor spin-glass transition is observed by DC and AC magnetic susceptibility,and confirmed by μSR experiment down to 0.1 K.However,the emergence of short-range magnetic order is indicated by the zero-field μSR experiments,and the absence of spin dynamics at low temperatures is evidenced by the longitudinal-field μSR technique.Compared with the results of Tm_(3)Sb_(3)Zn_(2)O_(14),another Tm-based Kagomé lattice with much more site-mixing disorder,the gapless spin liquid like behaviors in Tm_(3)Sb_(3)Zn_(2)O_(14)can be induced by disorder effect.Samples with perfect geometrical frustration are in urgent demand to establish whether QSL exists in this kind of materials with rare-earth Kagomé lattice.展开更多
Unconventional superconductivity,in particular,in noncentrosymmetric systems,has been a long-sought topic in condensed matter physics.Recently,Re-based superconductors have attracted great attention owing to the poten...Unconventional superconductivity,in particular,in noncentrosymmetric systems,has been a long-sought topic in condensed matter physics.Recently,Re-based superconductors have attracted great attention owing to the potential time-reversal symmetry breaking in their superconducting states.We report the superconducting properties of noncentrosymmetric compounds Ta_(x)Re_(1-x) with 0.1 ≤x≤0.25,and find that the superconducting transition temperature reaches a maximum of ~8 K at the optimal level x=0.15.Nevertheless,muon-spin rotation and relaxation measurements reveal no time-reversal symmetry breaking existing in its superconducting state,which is in sharp contrast to both centrosymmetric Re metal and many other noncentrosymmetric Re-based superconductors.展开更多
The discovery of pressure-induced superconductivity in helimagnets(CrAs,MnP)has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity.However,...The discovery of pressure-induced superconductivity in helimagnets(CrAs,MnP)has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity.However,the nature of the magnetism and magnetic interactions that drive the unusual double-helical magnetic order in these materials remains unclear.Here,we report neutron scattering measurements of magnetic excitations in CrAs single crystals at ambient pressure.Our experiments reveal well defined spin wave excitations up to about 150 meV with a pseudogap below 7 meV,which can be effectively described by the Heisenberg model with nearest neighbor exchange interactions.Most surprisingly,the spin excitations are largely quenched above the Néel temperature,in contrast to cuprates and iron pnictides where the spectral weight is mostly preserved in the paramagnetic state.Our results suggest that the helimagnetic order is driven by strongly frustrated exchange interactions,and that CrAs is at the verge of itinerant and correlation-induced localized states,which is therefore highly pressure-tunable and favorable for superconductivity.展开更多
A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feas...A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feasibility and reliability of the diagnostics are demonstrated in laser-driven ion acceleration experiments performed on the XL-II laser facility.The proton spectrum extrapolated from the scintillator data is in excellent agreement with the CR39 spectrum in terms of beam temperature and the cutoff energy.This real-time spectrometer allows an online measurement of the ion spectra in single shot,which enables efficient and statistical studies and applications in high-repetition-rate laser acceleration experiments.展开更多
The methanol-to-olefins(MTO)process has the potential to bridge future gaps in the supply of sustainable lower olefins.Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sit...The methanol-to-olefins(MTO)process has the potential to bridge future gaps in the supply of sustainable lower olefins.Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions.Here,we report a novel heteroatomic silicoaluminophosphate(SAPO)zeolite,SAPO-34-Ta,which incorporates active tantalum(V)sites within the framework to afford an optimal distribution of acidity.SAPO-34-Ta exhibits a remarkable total selectivity of 85.8%for propylene and ethylene with a high selectivity of 54.9%for propylene on full conversion of methanol at 400°C.In situ and operando synchrotron powder X-ray diffraction,diffuse reflectance infrared Fourier transform spectroscopy and inelastic neutron scattering,coupled with theoretical calculations,reveal trimethyloxonium as the key reaction intermediate,promoting the formation of first carbon-carbon bonds in olefins.The tacit cooperation between tantalum(V)and Brønsted acid sites within SAPO-34 provides an efficient platform for selective production of lower olefins from methanol.展开更多
We present results of frequency tripling experiments performed at the Hilase facility on a cryogenically gas cooled multislab ytterbium-doped yttrium aluminum garnet laser system, Bivoj/Di POLE. The laser produces hig...We present results of frequency tripling experiments performed at the Hilase facility on a cryogenically gas cooled multislab ytterbium-doped yttrium aluminum garnet laser system, Bivoj/Di POLE. The laser produces high-energy ns pulses at 10 Hz repetition rate, which are frequency doubled using a type-I phase-matched lithium triborate(LBO) crystal and consequently frequency summed using a type-II phase-matched LBO crystal. We demonstrated a stable frequency conversion to 343 nm at 50 J energy and 10 Hz repetition rate with conversion efficiency of 53%.展开更多
Unlike the classical phase transition driven by thermal fluctuations,the quantum phase transition arises at zero temperature when the system is tuned by a non-thermal parameter[1].For a continuous quantum phase transi...Unlike the classical phase transition driven by thermal fluctuations,the quantum phase transition arises at zero temperature when the system is tuned by a non-thermal parameter[1].For a continuous quantum phase transition,novel physics with higher symmetry may emerge at the quantum critical point(QCP).展开更多
Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications r...Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications requiring bright pulses of energetic ions. Characterizing the spectro-spatial profile of these ions at high repetition rates in the harsh radiation environments created by laser–plasma interactions remains challenging but is paramount for further source development.To address this, we present a compact scintillating fiber imaging spectrometer based on the tomographic reconstruction of proton energy deposition in a layered fiber array. Modeling indicates that spatial resolution of approximately 1 mm and energy resolution of less than 10% at proton energies of more than 20 MeV are readily achievable with existing 100 μm diameter fibers. Measurements with a prototype beam-profile monitor using 500 μm fibers demonstrate active readouts with invulnerability to electromagnetic pulses, and less than 100 Gy sensitivity. The performance of the full instrument concept is explored with Monte Carlo simulations, accurately reconstructing a proton beam with a multiple-component spectro-spatial profile.展开更多
基金supported by the China National SKA Programme(2020SKA0110300)the National Natural Science Foundation of China(NSFC,Grant Nos.12433012 and 12373097)the Guangzhou Science and Technology Funds(2023A03J0016)。
文摘The Square Kilometre Array(SKA)has the potential to revolutionize astronomical research through its unparalleled precision.A critical aspect of SKA imaging is the computation of the UVW coordinates,which must be accurate and reliable for the development of the SKA scientific data processor.Katpoint is the current method used to calculate UVW in Meer KAT.Using a pseudo-source,we employ a simple cross-product method to determine UVWs.In this study,we explore the applicability of Katpoint for SKA1-low and SKA1-mid and evaluate its precision.The conventional method,CALC/Omni UV,and Katpoint were quantitatively assessed through simulations.The results indicate that Katpoint exhibits substantial accuracy with MeerKAT compared to traditional techniques.However,its precision is slightly inadequate for the long baselines of SKA1.We improved the precision of Katpoint by identifying optimal offset values for pseudo-sources on the SKA1 telescope through simulation,finding a 0°.11 offset suitable for SKA1-Mid and a 0°.045 offset for SKA1-Low.Final result validations demonstrate that these adjustments render the computational accuracy fully comparable to the standard CALC/Omni UV method,which would meet the requirements of SKA high-precision imaging and offer a solution for high-precision imaging in radio interferometers.
文摘The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1402203)the National Natural Science Foundation of China(Grant No.12174065)supported by the Shenzhen Fundamental Research Program(Grant Nos.JCYJ20220818100405013 and JCYJ20230807093204010)。
文摘By using muon spin relaxation(μSR)measurements,we perform a comparative study of the microscopic magnetism in the parent compounds of infinite-layer nickelate superconductors RNiO_(2)(R=La,Nd).In either compound,the zero-fieldμSR spectra down to the lowest measured temperature reveal no long-range magnetic order.In LaNiO_(2),short-range spin correlations appear below T=150 K,and spins fully freeze below T∼10 K.NdNiO_(2)exhibits a more complex spin dynamics driven by the Nd 4f and Ni3d electron spin fluctuations.Further,it shows features suggesting the proximity to a spin-glass state occurring below T=5 K.In both compounds,the spin behavior with temperature is further confirmed by longitudinal-field μSR measurements.These results provide new insight into the magnetism of the parent compounds of the superconducting nickelates,crucial to understanding the microscopic origin of their superconductivity.
基金the financial support from the National Key Research and Development Program of China(Grant No.2022YFA1402702)the National Science Foundation of China(Grant Nos.U2032213 and 12004243)+8 种基金the National Science Foundation of China(Grant No.12274412)the Interdisciplinary Program of Wuhan National High Magnetic Field Center(Grant No.WHMFC 202122)Huazhong University of Science and Technologythe support from the National Natural Science Foundation of China(Grant No.52101236)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021B1515140014)the Guangdong Provincial Key Laboratory of Extreme Conditionsfinancial support from the National Key Research and Development Program of China(Grant Nos.2021YFA1600201 and 2023YFA1607402)the support of NSF-DMR-2003117supported by a beamtime allocation RB1910163 from the Science and Technology Facilities Council。
文摘Spinel compounds are of great interest in both fundamental and application-oriented perspectives due to the geometric magnetic frustration inherent to their lattice and the resulting complex magnetic states.Here,we applied x-ray diffraction,magnetization,heat capacity and powder inelastic neutron scattering measurements,along with theoretical calculations,to study the exotic properties of chromite-spinel oxides CoCr_(2)O_(4) and MnCr_(2)O_(4).The temperature dependence of the phonon spectra provides an insight into the correlation between oxygen motion and the magnetic order,as well as the magnetoelectric effect in the ground state of MnCr_(2)O_(4).Moreover,spin-wave excitations in CoCr_(2)O_(4) and MnCr_(2)O_(4) are compared with Heisenberg model calculations.This approach enables the precise determination of exchange energies and offers a comprehensive understanding of the spin dynamics and relevant exchange interactions in complicated spiral spin ordering.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
文摘We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model.We find that most emitted ions are thermal,but that some impurities chemisorbed on the target surface,such as protons,are accelerated by the electrostatic field created in the plasma by escaped electrons.The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures.We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.
文摘Eurofer97 steel is a primary structural material for applications in fusion reactors. Laser welding is a promising technique to join Eurofer97 plasma-facing components and overcome remote handling and maintenance challenges. The interaction of the induced residual stress and the heterogeneous microstructure degrades the mechanical performance of such fusion components. The present study investigates the distribution of residual stress in as-welded and post-heat treated Eurofer97 joints. The mechanistic connections between microstructure, material properties, and residual stress are also studied. Neutron diffraction is used to study the through-thickness residual stress distribution in three directions,and neutron Bragg edge imaging(NBEI) is applied to study the residual strain in high spatial resolution.The microstructures and micro-hardness are characterised by electron backscatter diffraction and nanoindentation, respectively. The M-shaped residual stress distribution through the thickness of the as-welded weldment is observed by neutron diffraction line scans over a region of 1.41 × 10 mm^(2). These profiles are cross-validated over a larger area(∼56 × 40 mm^(2)) with the higher spatial resolution by NBEI. The micro-hardness value in the fusion zone of the as-welded sample almost doubles from 2.75 ± 0.09 GPa to 5.06 ± 0.29 GPa due to a combination of residual stress and cooling-induced martensite. Conventional post weld heat treatment(PWHT) is shown to release ∼90% of the residual stress but not fully restore the microstructure. By comparing its hardness with that of stress-free samples, it is found that the microstructure is the primary contribution to the hardening. This study provides insight into the prediction of structural integrity for critical structural components of fusion reactors.
基金supported by the National Natural Science Foundation of China(No.11527811)the Key Program of State Key Laboratory of Particle Detection and ElectronicsA part of the work performed in the UKRI ISIS Detector Group was sponsored by the China Scholarship Council
文摘An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.
基金The study was supported financially by the Russian Foundation for Basic Research(Grant No.20-02-00790)the Joint Institute for High Temperatures of the Russian Academy of Sciences(Topic Grant No.01201357846)The UK team received financial support from the Engineering and Physical Sciences Research Council(Grant Nos.EP/L01663X/1 and EP/H012605/1).
文摘X-ray absorption spectroscopy is a well-accepted diagnostic for experimental studies of warm dense matter.It requires a short-lived X-ray source of sufficiently high emissivity and without characteristic lines in the spectral range of interest.In the present work,we discuss how to choose an optimum material and thickness to get a bright source in the wavelength range 2A–6A(∼2 keV to 6 keV)by considering relatively low-Z elements.We demonstrate that the highest emissivity of solid aluminum and silicon foil targets irradiated with a 1-ps high-contrast sub-kJ laser pulse is achieved when the target thickness is close to 10μm.An outer plastic layer can increase the emissivity even further.
基金The results of Project LQ1606 were obtained with the financial support of the Ministry of Education,Youths and Sports as part of targeted support from the National Programme of Sustainability II.This research was also sponsored by the Czech Science Foundation(Project No.18-09560S)by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15_003/0000449)from the European Regional Development Fund(HIFI),by the project on Advanced Research Using High Intensity Laser Produced Photons and Particles(No.CZ.02.1.01/0.0/0.0/16019/0000789)from the European Regional Development Fund(ADONIS)+1 种基金by theMinistry of Education and Science of the Russian Federation under Contract No.14.Z50.31.0007.The work was also supported by the Ministry of Education and Science of the Russian Federation(FTP Grant#14.607.21.0196,Project ID:RFMEFI60717X0196)The work of JIHT RAS team on X-ray measurements and analysis was done with financial support fromthe Russian Science Foundation(Grant#14-50-00124).
文摘The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).
文摘The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is typically on structure solution. The research proposes a lightweight powder diffraction visualization program with the capability of fast rendering to compare powder data sets. Based on the success of the earlier version and user requests, Jpowder has been extended to display powder diffraction datasets using stack plot, which options to use meta-data for crystallographic powder diffraction data in XML format. Such stack plots allows crystallographers to identify phase transitions in materials.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303104 and2016YFA0300503the National Natural Science Foundation of China under Grant No 11774061the Chinese Government Scholarship of China Scholarship Council
文摘Time reversal symmetry(TRS)is a key symmetry for classification of unconventional superconductors,and the violation of TRS often results in a wealth of novel properties.Here we report the synthesis and superconducting properties of the partially filled skutterudite Pr1-δPt4Ge12.The results from x-ray diffraction and magnetization measurements show that the[Pt4 Ge12]cage-forming structure survives and bulk superconductivity is preserved below the superconducting transition temperature Tc = 7.80 K.The temperature dependence of both the upper critical field and the electronic specific heat can be described in terms of a two-gap model,providing strong evidence of multi-band superconductivity.TRS breaking is observed using zero Held muon-spin relaxation experiments,and the magnitude of the spontaneous field is nearly half of that in PrPt4Ge12.
基金the ISIS cryogenics Group for their valuable help during the μSR experiments (10.5286/ISIS.E.RB1820271)supported by the National Natural Science Foundation of China (Grant Nos.12034004 and 12174065)the Shanghai Municipal Science and Technology (Major Project Grant Nos.2019SHZDZX01 and 20ZR1405300)
文摘The structure and magnetic properties of rare-earth ions Tm^(3+)Kagomé lattice Tm_(3)Sb_(3)Mg_(2)O_(14)are studied by x-ray diffraction,magnetic susceptibility and muon spin relaxation(𝜇SR)experiments.The existence of a small amount of Tm/Mg site-mixing disorder is revealed.DC magnetic susceptibility measurement shows that Tm^(3+)magnetic moments are antiferromagnetically correlated with a negative Curie-Weiss temperature of−26.3 K.Neither long-range magnetic order nor spin-glass transition is observed by DC and AC magnetic susceptibility,and confirmed by μSR experiment down to 0.1 K.However,the emergence of short-range magnetic order is indicated by the zero-field μSR experiments,and the absence of spin dynamics at low temperatures is evidenced by the longitudinal-field μSR technique.Compared with the results of Tm_(3)Sb_(3)Zn_(2)O_(14),another Tm-based Kagomé lattice with much more site-mixing disorder,the gapless spin liquid like behaviors in Tm_(3)Sb_(3)Zn_(2)O_(14)can be induced by disorder effect.Samples with perfect geometrical frustration are in urgent demand to establish whether QSL exists in this kind of materials with rare-earth Kagomé lattice.
基金Supported by the National Key R&D Program of China(Grant No.2018YFA0704300)the National Natural Science Foundation of China(Grant Nos.U1732162,11974061,11704047,U1832147 and 11674054)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)。
文摘Unconventional superconductivity,in particular,in noncentrosymmetric systems,has been a long-sought topic in condensed matter physics.Recently,Re-based superconductors have attracted great attention owing to the potential time-reversal symmetry breaking in their superconducting states.We report the superconducting properties of noncentrosymmetric compounds Ta_(x)Re_(1-x) with 0.1 ≤x≤0.25,and find that the superconducting transition temperature reaches a maximum of ~8 K at the optimal level x=0.15.Nevertheless,muon-spin rotation and relaxation measurements reveal no time-reversal symmetry breaking existing in its superconducting state,which is in sharp contrast to both centrosymmetric Re metal and many other noncentrosymmetric Re-based superconductors.
基金supported by the National Natural Science Foundation of China(Grant No.11874119)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘The discovery of pressure-induced superconductivity in helimagnets(CrAs,MnP)has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity.However,the nature of the magnetism and magnetic interactions that drive the unusual double-helical magnetic order in these materials remains unclear.Here,we report neutron scattering measurements of magnetic excitations in CrAs single crystals at ambient pressure.Our experiments reveal well defined spin wave excitations up to about 150 meV with a pseudogap below 7 meV,which can be effectively described by the Heisenberg model with nearest neighbor exchange interactions.Most surprisingly,the spin excitations are largely quenched above the Néel temperature,in contrast to cuprates and iron pnictides where the spectral weight is mostly preserved in the paramagnetic state.Our results suggest that the helimagnetic order is driven by strongly frustrated exchange interactions,and that CrAs is at the verge of itinerant and correlation-induced localized states,which is therefore highly pressure-tunable and favorable for superconductivity.
基金by the National Natural Science Foundation of China under Grant Nos 10905092(Young Scientists Fund),10925421,10974250,and 10935002the National Basic Research Program of China under Grant No 2007CB815102the Fundamental Research Funds for the Central Universities.
文摘A real-time ion spectrometer mainly based on a high-resolution Thomson parabola and a plastic scintillator is designed and developed.The spectrometer is calibrated by protons from an electrostatic accelerator.The feasibility and reliability of the diagnostics are demonstrated in laser-driven ion acceleration experiments performed on the XL-II laser facility.The proton spectrum extrapolated from the scintillator data is in excellent agreement with the CR39 spectrum in terms of beam temperature and the cutoff energy.This real-time spectrometer allows an online measurement of the ion spectra in single shot,which enables efficient and statistical studies and applications in high-repetition-rate laser acceleration experiments.
基金University of Manchester,the National Natural Science Foundation of China and BNLMS for funding,and the EPSRC for funding of the EPSRC National EPR Facility at Manchester(EP/W014532/1 and EP/X034623/1)We are grateful to the STFC/ISIS Facility and Diamond Light Source for access to the beamlines TOSCA/MAPS,and I11/B18/B22,respectively+8 种基金We are grateful to the STFC/ISIS Facility and Diamond Light Source for access to the beamlines TOSCA/MAPS,and I11/B18/B22,respectivelyWe acknowledge the UK catalysis Hub Block Allocation Group(BAG)Programme Mode Application for provision of beamtime at B18 for collection of the data presented in this work and the initial discussion of the dataThe UK Catalysis Hub is kindly thanked for resources and support provided via our membership of the UK Catalysis Hub Consortium and funded by EPSRC grant:EP/R026939,EP/R026815,EP/R026645,EP/R027129 and EP/M013219(biocatalysis)We acknowledge the support of The University of Manchester's Dalton Cumbrian Facility(DCF),a partner in the National Nuclear User FacilityWe recognise Dr.R.Edge for the assistance during the 60Co-irradiation processesWe thank M.Kibble for help at ISIS beamlinesTEM access was supported by the Henry Royce Institute for Advanced Materials,funded through EPSRC grants EP/R00661X,EP/S019367,EP/P025021 and EP/P025498Zhaodong Zhu thanks the President's Doctoral Scholar award of University of Manchester for fundingMeng He and Lutong Shan thank the China Scholarship Council(CSC)for funding.
文摘The methanol-to-olefins(MTO)process has the potential to bridge future gaps in the supply of sustainable lower olefins.Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions.Here,we report a novel heteroatomic silicoaluminophosphate(SAPO)zeolite,SAPO-34-Ta,which incorporates active tantalum(V)sites within the framework to afford an optimal distribution of acidity.SAPO-34-Ta exhibits a remarkable total selectivity of 85.8%for propylene and ethylene with a high selectivity of 54.9%for propylene on full conversion of methanol at 400°C.In situ and operando synchrotron powder X-ray diffraction,diffuse reflectance infrared Fourier transform spectroscopy and inelastic neutron scattering,coupled with theoretical calculations,reveal trimethyloxonium as the key reaction intermediate,promoting the formation of first carbon-carbon bonds in olefins.The tacit cooperation between tantalum(V)and Brønsted acid sites within SAPO-34 provides an efficient platform for selective production of lower olefins from methanol.
基金The European Regional Development Fund and the state budget of the Czech Republic project Hi LASE Co E(CZ.02.1.01/0.0/0.0/15_006/0000674)project Las App(CZ.02.01.01/00/22_008/0004573)the Horizon 2020 Framework Programme(H2020)(739573)
文摘We present results of frequency tripling experiments performed at the Hilase facility on a cryogenically gas cooled multislab ytterbium-doped yttrium aluminum garnet laser system, Bivoj/Di POLE. The laser produces high-energy ns pulses at 10 Hz repetition rate, which are frequency doubled using a type-I phase-matched lithium triborate(LBO) crystal and consequently frequency summed using a type-II phase-matched LBO crystal. We demonstrated a stable frequency conversion to 343 nm at 50 J energy and 10 Hz repetition rate with conversion efficiency of 53%.
基金supported by the National Natural Science Foundation of China(U2032213(J.M.),12274288(X.W.and J.W.))the Innovation Program for Quantum Science and Technology(2021ZD0301900(X.W.and J.W.),2022YFA1402702(J.M.))+1 种基金the Natural Science Foundation of Shanghai(20ZR1428400),Shanghai Pujiang Program(20PJ1408100(X.W.and J.W.))Grants-in-Aid for Scientific Research(25220803 and 24244059)from MEXT.
文摘Unlike the classical phase transition driven by thermal fluctuations,the quantum phase transition arises at zero temperature when the system is tuned by a non-thermal parameter[1].For a continuous quantum phase transition,novel physics with higher symmetry may emerge at the quantum critical point(QCP).
基金financially supported by STFC,Dstl and EPSRC(grant numbers EP/R006202/1,EP/V049232/1 and EP/P020607/1)by Laserlab-Europe(grant agreement number 871124,European Union’s Horizon 2020 research and innovation program).
文摘Next generation high-power laser facilities are expected to generate hundreds-of-MeV proton beams and operate at multiHz repetition rates, presenting opportunities for medical, industrial and scientific applications requiring bright pulses of energetic ions. Characterizing the spectro-spatial profile of these ions at high repetition rates in the harsh radiation environments created by laser–plasma interactions remains challenging but is paramount for further source development.To address this, we present a compact scintillating fiber imaging spectrometer based on the tomographic reconstruction of proton energy deposition in a layered fiber array. Modeling indicates that spatial resolution of approximately 1 mm and energy resolution of less than 10% at proton energies of more than 20 MeV are readily achievable with existing 100 μm diameter fibers. Measurements with a prototype beam-profile monitor using 500 μm fibers demonstrate active readouts with invulnerability to electromagnetic pulses, and less than 100 Gy sensitivity. The performance of the full instrument concept is explored with Monte Carlo simulations, accurately reconstructing a proton beam with a multiple-component spectro-spatial profile.