该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm^(2),达到38.5 m A/cm^(...该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm^(2),达到38.5 m A/cm^(2),填充因子为82.7%,光电转换效率为23.5%。实验发现,在nc-Si Ox:H薄膜沉积前对本征非晶硅层表面进行处理,沉积1 nm纳米晶硅(nc-Si:H)种子层,可改善nc-Si Ox:H薄膜的晶化率,降低薄膜中的非晶相含量。与单层nc-Si Ox:H窗口层的电池相比,nc-Si:H/nc-Si Ox:H叠层结构提高电池填充因子,达到83.4%,光电转换效率增加了0.3%,达到23.8%。展开更多
Magnetocardiography(MCG)measurement is important for investigating the cardiac biological activities.Traditionally,the extremely weak MCG signal was detected by using superconducting quantum interference devices(SQUID...Magnetocardiography(MCG)measurement is important for investigating the cardiac biological activities.Traditionally,the extremely weak MCG signal was detected by using superconducting quantum interference devices(SQUIDs).As a room-temperature magnetic-field sensor,optically pumped magnetometer(OPM)has shown to have comparable sensitivity to that of SQUIDs,which is very suitable for biomagnetic measurements.In this paper,a synthetic gradiometer was constructed by using two OPMs under spin-exchange relaxation-free(SERF)conditions within a moderate magnetically shielded room(MSR).The magnetic noise of the OPM was measured to less than 70 fT/Hz1/2.Under a baseline of 100 mm,noise cancellation of about 30 dB was achieved.MCG was successfully measured with a signal to noise ratio(SNR)of about 37 dB.The synthetic gradiometer technique was very effective to suppress the residual environmental fields,demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.展开更多
Co-primary spectrum sharing for multiple operators has been utilized to fully explore the spectrum resources and thus improve the spectrum efficiency. The inter-operator interference(IOI) problem should be seriously c...Co-primary spectrum sharing for multiple operators has been utilized to fully explore the spectrum resources and thus improve the spectrum efficiency. The inter-operator interference(IOI) problem should be seriously considered in order to achieve the mentioned target, especially under the scenario of the ultradense network(UDN) in the fifth generation(5G) wireless systems. To solve this problem, we propose an asymmetrical power levels based soft IOI coordination mechanism. The shared spectrum pool is consisted of three separated parts, where each part can be dynamically adjusted according to the minimal spectrum demand from each operator. Furthermore, different power masks are configured to different parts for each operator. The simulation results show that the proposed mechanism can improve the network spectrum efficiency significantly.展开更多
A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated...A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.展开更多
Due to 5G's stringent and uncertainty traffic requirements,open ecosystem would be one inevitable way to develop 5G.On the other hand,GPP based mobile communication becomes appealing recently attributed to its str...Due to 5G's stringent and uncertainty traffic requirements,open ecosystem would be one inevitable way to develop 5G.On the other hand,GPP based mobile communication becomes appealing recently attributed to its striking advantage in flexibility and re-configurability.In this paper,both the advantages and challenges of GPP platform are detailed analyzed.Furthermore,both GPP based software and hardware architectures for open 5G are presented and the performances of real-time signal processing and power consumption are also evaluated.The evaluation results indicate that turbo and power consumption may be another challengeable problem should be further solved to meet the requirements of realistic deployments.展开更多
Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we d...Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we describe the network lifetime as a function of the communication and data aggregation energy consumption and analyze the lifetime of different transmission schemes in the homogeneous and heterogeneous sensor networks. The analysis carried out in this paper can provide the guidelines for network deployment and protocol design in the future applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61701486)。
文摘Magnetocardiography(MCG)measurement is important for investigating the cardiac biological activities.Traditionally,the extremely weak MCG signal was detected by using superconducting quantum interference devices(SQUIDs).As a room-temperature magnetic-field sensor,optically pumped magnetometer(OPM)has shown to have comparable sensitivity to that of SQUIDs,which is very suitable for biomagnetic measurements.In this paper,a synthetic gradiometer was constructed by using two OPMs under spin-exchange relaxation-free(SERF)conditions within a moderate magnetically shielded room(MSR).The magnetic noise of the OPM was measured to less than 70 fT/Hz1/2.Under a baseline of 100 mm,noise cancellation of about 30 dB was achieved.MCG was successfully measured with a signal to noise ratio(SNR)of about 37 dB.The synthetic gradiometer technique was very effective to suppress the residual environmental fields,demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.
基金supported by National High Technology Research and Development Program of China under Grants No.2014AA01A701major project of Ministry of Industry and Information Technology of China under Grant No.2015ZX03001032+1 种基金major project of Shanghai under Grant No.,14511101501National Natural Science Foundation of China under Grant No.61471347
文摘Co-primary spectrum sharing for multiple operators has been utilized to fully explore the spectrum resources and thus improve the spectrum efficiency. The inter-operator interference(IOI) problem should be seriously considered in order to achieve the mentioned target, especially under the scenario of the ultradense network(UDN) in the fifth generation(5G) wireless systems. To solve this problem, we propose an asymmetrical power levels based soft IOI coordination mechanism. The shared spectrum pool is consisted of three separated parts, where each part can be dynamically adjusted according to the minimal spectrum demand from each operator. Furthermore, different power masks are configured to different parts for each operator. The simulation results show that the proposed mechanism can improve the network spectrum efficiency significantly.
基金Projects were supported by the National Natural Science Foundation of China (61875252,92165202)the Strategic Priority Research Program (A) of Chinese Academy of Sciences (XDA18040300)。
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304003)。
文摘A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.
基金funded in part by National Natural Science Foundation of China(grant NO.61471347)National S&T Mayor Project of the Ministry of S&T of China(grant NO.2016ZX03001020-003)+1 种基金key program for international S&T Cooperation Program of China(grant NO.2014DFA11640)Shanghai Natural Science Foundation(grant NO.16ZR1435100)
文摘Due to 5G's stringent and uncertainty traffic requirements,open ecosystem would be one inevitable way to develop 5G.On the other hand,GPP based mobile communication becomes appealing recently attributed to its striking advantage in flexibility and re-configurability.In this paper,both the advantages and challenges of GPP platform are detailed analyzed.Furthermore,both GPP based software and hardware architectures for open 5G are presented and the performances of real-time signal processing and power consumption are also evaluated.The evaluation results indicate that turbo and power consumption may be another challengeable problem should be further solved to meet the requirements of realistic deployments.
基金Sponsored by the Shanghai Leading Academic Discipline Project (Grant No.S30108 and 08DZ2231100)Shanghai Education Committee (Grant No.09YZ33)+1 种基金Shanghai Science Committee(Grant No.08220510900)Key Lab Fund of SIMIT
文摘Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we describe the network lifetime as a function of the communication and data aggregation energy consumption and analyze the lifetime of different transmission schemes in the homogeneous and heterogeneous sensor networks. The analysis carried out in this paper can provide the guidelines for network deployment and protocol design in the future applications.