期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multiscale parallel feature aggregation network with attention fusion(MPFAN-AF):A novel approach to cataract disease classification
1
作者 Mohd Aquib Ansari Shahnawaz Ahmad Arvind Mewada 《Medical Data Mining》 2025年第4期17-28,共12页
Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep lear... Background:Early and accurate diagnosis of cataracts,which ranks among the leading preventable causes of blindness,is critical to securing positive outcomes for patients.Recently,eye image analyses have used deep learning(DL)approaches to automate cataract classification more precisely,leading to the development of the Multiscale Parallel Feature Aggregation Network with Attention Fusion(MPFAN-AF).Focused on improving a model’s performance,this approach applies multiscale feature extraction,parallel feature fusion,along with attention-based fusion to sharpen its focus on salient features,which are crucial in detecting cataracts.Methods:Coarse-level features are captured through the application of convolutional layers,and these features undergo refinement through layered kernels of varying sizes.Moreover,this method captures all the diverse representations of cataracts accurately by parallel feature aggregation.Utilizing the Cataract Eye Dataset available on Kaggle,containing 612 labelled images of eyes with and without cataracts proportionately(normal vs.pathological),this model was trained and tested.Results:Results using the proposed model reflect greater precision over traditional convolutional neural networks(CNNs)models,achieving a classification accuracy of 97.52%.Additionally,the model demonstrated exceptional performance in classification tasks.The ablation studies validated that all applications added value to the prediction process,particularly emphasizing the attention fusion module.Conclusion:The MPFAN-AF model demonstrates high efficiency together with interpretability because it shows promise as an integration solution for real-time mobile cataract detection screening systems.Standard performance indicators indicate that AI-based ophthalmology tools have a promising future for use in remote conditions that lack medical resources. 展开更多
关键词 cataract classification deep learning multiscale feature extraction attention mechanism medical image analysis
在线阅读 下载PDF
基于CFD的结晶搅拌反应釜流场分析与改进 被引量:15
2
作者 马泽文 刘涛 孙旭东 《系统仿真学报》 CAS CSCD 北大核心 2018年第5期1900-1907,共8页
采用计算流体力学(CFD)的方法对1 L结晶搅拌反应釜进行流场分析,首先利用一种CFD软件—FLUENT模拟分析单层涡轮式搅拌桨对搅拌釜内流场分布的影响,使用标准k–?湍流模型对搅拌水溶液的单相流场进行三维仿真模拟,仿真研究表明模拟流场与... 采用计算流体力学(CFD)的方法对1 L结晶搅拌反应釜进行流场分析,首先利用一种CFD软件—FLUENT模拟分析单层涡轮式搅拌桨对搅拌釜内流场分布的影响,使用标准k–?湍流模型对搅拌水溶液的单相流场进行三维仿真模拟,仿真研究表明模拟流场与实际流场分布相符,可以看出对1 L结晶反应釜的中下部能达到混合均匀,然而反应釜的中上部流场分布不均匀。为此,提出采用两层搅拌桨的方式解决反应釜上下速度不均匀的问题,仿真结果表明两层搅拌桨所产生的上下两个流场能够较好地连接起来,搅拌效果明显优于传统的单浆方式。 展开更多
关键词 搅拌反应釜 计算流体力学 FLUENT软件 单相流场 数值模拟
原文传递
基于FT-NIR光谱技术在线监测乙醇发酵过程的标定建模 被引量:1
3
作者 王旭东 刘涛 孙旭东 《信息与控制》 CSCD 北大核心 2019年第5期634-640,共7页
针对在线检测乙醇发酵过程中葡萄糖浓度、乙醇浓度和生物量问题,提出了一种基于FT-NIR光谱技术在线检测这些参数的光谱标定建模方法.采用偏稳健M回归(PRM)的方法消除了采集光谱异常值对于标定建模的影响,给出了一种网格搜索寻优方法确... 针对在线检测乙醇发酵过程中葡萄糖浓度、乙醇浓度和生物量问题,提出了一种基于FT-NIR光谱技术在线检测这些参数的光谱标定建模方法.采用偏稳健M回归(PRM)的方法消除了采集光谱异常值对于标定建模的影响,给出了一种网格搜索寻优方法确定最优因子数和权重系数,并从准确性、稳定性和分辨度三方面给出评价模型指标.结果表明, PRM方法建立的模型具有较好的预测效果.最后,通过对一个乙醇发酵过程的在线监测实验,验证了所提标定建模和在线监测方法的有效性. 展开更多
关键词 乙醇发酵过程 近红外光谱分析技术 偏稳健M回归 偏最小二乘法 模型评价
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部