The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the...The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20~ of the sky at any instant, and the entire sky on a timescale of a few hours. With its launch in 2008, Fermi opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origins of cosmic rays, and searches for hypothetical new phenomena such as particle dark matter annihilations. A brief overview and selected science highlights from the first four years are provided.展开更多
A new search for two-neutrino double-beta(2νββ)decay of^(136)Xe to the 0+1 excited state of 136Ba is performed with the full EXO-200 dataset.A deep learning-based convolutional neural network is used to discriminat...A new search for two-neutrino double-beta(2νββ)decay of^(136)Xe to the 0+1 excited state of 136Ba is performed with the full EXO-200 dataset.A deep learning-based convolutional neural network is used to discriminate signal from background events.Signal detection efficiency is increased relative to previous searches by EXO-200 by more than a factor of two.With the addition of the Phase II dataset taken with an upgraded detector,the median 90%confidence level half-life sensitivity of 2νββdecay to the 0+1 state of 136Ba is 2.9×10^(24)yr using a total^(136)Xe exposure of 234.1 kg yr.No statistically significant evidence for 2νββdecay to the 0^(+)_(1)state is observed,leading to a lower limit of T2ν1/2(0^(+)→0^(+)_(1))>1.4×10^(24)yr at 90%confidence level,improved by 70%relative to the current world's best constraint.展开更多
文摘The Fermi Gamma-ray Space Telescope, formerly called GLAST, measures the cosmic gamma-ray flux in the energy range 8 keV to 〉 300 GeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20~ of the sky at any instant, and the entire sky on a timescale of a few hours. With its launch in 2008, Fermi opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origins of cosmic rays, and searches for hypothetical new phenomena such as particle dark matter annihilations. A brief overview and selected science highlights from the first four years are provided.
文摘A new search for two-neutrino double-beta(2νββ)decay of^(136)Xe to the 0+1 excited state of 136Ba is performed with the full EXO-200 dataset.A deep learning-based convolutional neural network is used to discriminate signal from background events.Signal detection efficiency is increased relative to previous searches by EXO-200 by more than a factor of two.With the addition of the Phase II dataset taken with an upgraded detector,the median 90%confidence level half-life sensitivity of 2νββdecay to the 0+1 state of 136Ba is 2.9×10^(24)yr using a total^(136)Xe exposure of 234.1 kg yr.No statistically significant evidence for 2νββdecay to the 0^(+)_(1)state is observed,leading to a lower limit of T2ν1/2(0^(+)→0^(+)_(1))>1.4×10^(24)yr at 90%confidence level,improved by 70%relative to the current world's best constraint.