期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Robotics,artificial intelligence,telepresence,and telesurgery:The future of urology
1
作者 Vipul Patel Shady Saikali Marcio Covas Moschovas 《Asian Journal of Urology》 2025年第2期131-133,共3页
1.Introduction The continuous integration of advanced technologies into medicine has brought profound changes across nearly all specialties.In urology,a field traditionally characterized by its reliance on delicate,pr... 1.Introduction The continuous integration of advanced technologies into medicine has brought profound changes across nearly all specialties.In urology,a field traditionally characterized by its reliance on delicate,precision-driven procedures,the impact of innovations such as robotics,artificial intelligence(AI),telepresence,and telesurgery has been transformative. 展开更多
关键词 TELESURGERY UROLOGY ROBOTICS advanced technologies TELEPRESENCE roboticsartificial intelligence ai telepresenceand artificial intelligence
在线阅读 下载PDF
Discrete-event modeling for internet multi-robotics
2
作者 赵杰 高胜 蔡鹤皋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第6期618-623,共6页
Internet multi-robotics is a typical discrete-event system. In order to describe joint activities between multiple operators and multiple robots, a 4-level discrete-event model is proposed in this paper based on the c... Internet multi-robotics is a typical discrete-event system. In order to describe joint activities between multiple operators and multiple robots, a 4-level discrete-event model is proposed in this paper based on the controlled condition/event Petri nets (CCEP). On the first or mission level, the task splitting of the system is defined; on the second or multi-operator level, a precedence graph is introduced for every operator to plan his or her robotic actions; on the third or coordination level, the above precedence graphs are translated and integrated into the corresponding CCEPs in terms of specific rules; and on the last or multi-robot level, operators can select their control range by setting the corresponding control marks of the obtained CCEPs. As a consequence, a clear mechanism of operator-robot collaboration is obtained to conduct the development of the system. 展开更多
关键词 INTERNET multi-operator MULTI-ROBOT Petri nets discrete-event model
在线阅读 下载PDF
Experimental study of Internet telerobotics based on virtual guides
3
作者 高胜 赵杰 蔡鹤皋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第2期123-128,共6页
For the virtual environment (VE) to control remote robots through Internet, this paper proposes an operational idea based on virtual guides (VGs). The VGs consist of three types, line VG, plane VG, and body VG, which ... For the virtual environment (VE) to control remote robots through Internet, this paper proposes an operational idea based on virtual guides (VGs). The VGs consist of three types, line VG, plane VG, and body VG, which can greatly enhance the safety and flexibility of the man-machine system. Through the analysis of several common cases, the idea of the VGs are first introduced and described. Second, detailed descriptions of the three VGs are given, and then a uniform representation of all VGs is given. Finally, a typical experiment is designed and implemented according to the modes of video feedback, video&VE feedback, and video&VE&VG feedback. Experimental results show that the operation based on VEs and VGs have significant advantages over that based on video feedback, and VGs can greatly improve the ability of the VE to control remote robots, thus obtaining high and efficient man-machine cooperation. 展开更多
关键词 TELEOPERATION robot LNTERNET virtual environment virtual guide
在线阅读 下载PDF
Method for Decreasing the Peak Actuating Force and Parasitic Displacements of 4-4R Compliant Parallel Pointing Mechanism through Redundant-actuation
4
作者 Jun Ren Yikang Shu Shusheng Bi 《Chinese Journal of Mechanical Engineering》 2025年第4期300-315,共16页
Reducing the peak actuating force(PAF)and parasitic displacement is of high significance for improving the performance of compliant parallel mechanisms(CPMs).In this study,a 2-DOF 4-4R compliant parallel pointing mech... Reducing the peak actuating force(PAF)and parasitic displacement is of high significance for improving the performance of compliant parallel mechanisms(CPMs).In this study,a 2-DOF 4-4R compliant parallel pointing mechanism(4-4R CPPM)was used as the object,and the actuating force of the mechanism was optimized through redundant actuation.This was aimed at minimizing the PAF and parasitic displacement.First,a kinetostatic model of the redundantly actuated 4-4R CPPM was established to reveal the relationship between the input forces/displacements and the output displacements of the mobile platform.Subsequently,based on the established kinetostatic model,methods for optimizing the actuating force distribution with the aim of minimizing the PAF and parasitic displacement were introduced successively.Second,a simulated example of a mobile platform’s spatial pointing trajectory validated the accuracy of the kinetostatic model.The results show a less than 0.9%relative error between the analytical and finite element(FE)results,and the high consistency indicates the accuracy of the kinetostatic model.Then,the effectiveness of the method in minimizing the PAF and parasitic displacement was validated using two simulated examples.The results indicate that compared with the non-redundant actuation case,the PAF of the mechanism could be reduced by up to 50%,and the parasitic displacement was reduced by approximately three-four orders of magnitude by means of redundant actuation combined with the optimal distribution of the actuating force.As expected,with the reduction in parasitic displacement,the FE-results of the output angular displacements(θ_(x) andθ_(z))of the mobile platform were closer to the target oscillation trajectory.This further verified that the reduction in parasitic displacement is indeed effective in improving the motion accuracy of the mechanism.The advantage of this proposed method is that it reduces the PAF and parasitic displacement from the perspective of the actuating force control strategy,without the requirement of structural changes to the original mechanism. 展开更多
关键词 Compliant parallel mechanism(CPM) Compliance matrix method Kinetostatic Redundant-actuation Parasitic displacement Peak actuating force(PAF)
在线阅读 下载PDF
Solidification cracking inhibition mechanism of 2024 Al alloy during oscillating laser-arc hybrid welding based on Zr-core-Al-shell wire
5
作者 Jun Jin Shaoning Geng +3 位作者 Ping Jiang Liangyuan Ren Chu Han Yuantai Li 《Journal of Materials Science & Technology》 2025年第14期153-168,共16页
Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(Z... Solidification cracking(SC)of 2024 high-strength aluminium alloy during fusion welding or additive manufacturing has been a long-term issue.In this work,crack-free weld could be obtained using a Zr-core-Alshell wire(ZCASW filler material,a novel filler)coupled with an oscillating laser-arc hybrid welding process,and we investigated the solidification cracking susceptibility(SCS)and cracking behavior of AA2024 weld fabricated with different filler materials.The cracking inhibition mechanism of the weld fabricated with ZCASW filler material was elucidated by combined experiments and phase-field simulation.The results show that the effectiveness of filler materials in reducing the SC gradually improves in the order of ER2319 filler material<ER4043 filler material<ZCASW filler material.The main cracking(when using the ER2319 filler material)branches and the micro cracking branches interact with each other to produce cracking coalescence,which aggravates the cracking propagation.The formation of the Al_(3) Zr phase(when using the ZCASW filler material)promotes heterogeneous nucleation of α-Al,thereby resulting in finer and equiaxed non-dendrite structures,which shortens the liquid phase channels and decreases cracking susceptibility index|d T/d(f_(s))^(1/2)|(T is temperature and f_(s) is solidification fraction)at final solidification.A higher proportion(7.65%area fraction)of inter-dendrite phase with spherical distribution state,a shorter(8.6 mm liquid channel length)inter-dendrite phase coupled with round non-dendrite structure(6μm dendrite size)effectively inhibit the SC.The present study can be a useful database for welding and additive manufacturing of AA2024. 展开更多
关键词 2024 aluminium alloy Filler materials Solidification cracking susceptibility Cracking behavior Cracking inhibition mechanism
原文传递
Hand-Eye Coordinated Grasping Method for Textured Targets in Unstructured Dynamic Scenes
6
作者 Yazhe Luo Sipu Ruan +1 位作者 Yifei Li Diansheng Chen 《Chinese Journal of Mechanical Engineering》 2025年第4期428-446,共19页
The“visual perception+hand-eye transformation+motion planning”paradigm of robotic coordination grasping has demonstrated feasibility in unstructured scenes such as logistics.However,further developments in handling ... The“visual perception+hand-eye transformation+motion planning”paradigm of robotic coordination grasping has demonstrated feasibility in unstructured scenes such as logistics.However,further developments in handling complex and dynamic environments remain challenging.To address the issue of unknown targets requiring immediate deployment for grasping tasks,this paper proposes a novel hand-eye coordinated method for progressive grasping guided by the texture keypoints of the target.First,we develop an efficient system for acquiring texture-matching templates and an estimation algorithm for the feature region that filters the precisely registered texture feature points of the target.Then,we integrate optical flow estimation to update and track the robust texture region in real time,and design a feature-based servo grasping controller to map the optical flow points of the high-registration texture region to the robot joint velocities for precise tracking.Finally,we impose spatiotemporal constraints on the planned trajectory and decouple the target motion,to achieve progressive approach and rotationally invariant grasping for both dynamic and static targets.Comprehensive experiments demonstrate that this tracking grasping method exhibits a low latency,a high precision,and robustness in complex scenarios and dynamic disturbances,with an average position accuracy of approximately 5 mm,a rotation accuracy of approximately 0.02,and an overall grasping success rate of approximately 90%. 展开更多
关键词 Visual servo Robotic grasping Template matching Optical flow tracking
在线阅读 下载PDF
Clinical applications of artificial intelligence in robotic urologic surgery
7
作者 Shady Saikali Runzhuo Ma +1 位作者 Vipul Patel Andrew Hung 《Asian Journal of Urology》 2025年第2期139-142,共4页
The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and ma... The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and machine learning capabilities,has not only expedited the evolution of robotic surgical procedures but also significantly improved diagnostic accuracy and surgical outcomes. 展开更多
关键词 robotic surgical procedures data analysis artificial intelligence ai clinical applications artificial intelligence robotic urologic surgery machine learning
在线阅读 下载PDF
Understanding the Machining Process of Hierarchical Micro/Nanograting Structures Used for Optical Variable Device
8
作者 Yanquan Geng Wenhan Zhu +5 位作者 Xiaosong Zhang Aoxiang Zhang Yongda Yan Hailong Cui Bo Xue Jiqiang Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期161-185,共25页
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie... Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs. 展开更多
关键词 Hierarchical micro/nanograting structures Optical variable devices Finite element simulation Tool trajectory controlling
在线阅读 下载PDF
Force-controlled 3D mechanical stretching to enhance the exosome secretion of bone mesenchymal stem cells for bone repair
9
作者 Jie Wu Hao Wang +6 位作者 Tao Sun Qing Shi Xie Chen Yuanbo Qi Sheng Tao Jiahua Zhao Daohong Liu 《Bio-Design and Manufacturing》 2025年第3期442-460,I0034-I0039,共25页
Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(... Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(3D)mechanical stimulation has been a well-known method for enhancing exosome secretion;however,the traditional stimulation process is always achieved by controlling the displacement of manipulators,which may induce uneven loading distribution and degradation of stimulation strength.Here,we propose a micro-stretching manipulator that automatically controls the stretching force applied to gelatin methacryloyl(GelMA)/hyaluronic acid methacryloyl(HAMA)hybrid hydrogel sheets containing BMSCs within an incubator.To ensure the structural stability of the sheets after long-term stretching,the mixing ratio between GelMA and HAMA was optimized according to the mechanical property response of the sheets to cyclical loading.Subsequently,force-controlled mechanical loading was applied to the BMSC-laden sheets to produce exosomes.Compared with displacement control,force-controlled loading provides a more stable force stimulation,thereby enhancing exosome secretion.Furthermore,continuously stimulated exosomes exhibited a stronger capacity for promoting osteogenic differentiation of BMSCs and facilitating the repair of bone defects in a rat model.These findings suggest that force-controlled loading of cell-laden hydrogels offers a novel approach for the production of BMSC-derived exosomes and their application in bone repair. 展开更多
关键词 EXOSOMES Force control Mechanical loading Mesenchymal stem cells Bone repair
暂未订购
A Minimalistic and Decentralised Approach to Formation Control for Crowded UUV Swarms Inspired by Fish Schooling
10
作者 Xuhang Wu Xiangyang Deng +5 位作者 Bang Wen Shengzhi Yue Siyang Shao Fumin Zhang Fang Wang Yuanshan Lin 《Journal of Bionic Engineering》 2025年第5期2646-2659,共14页
Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on... Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities. 展开更多
关键词 Formation control Bio-inspired formation control Crowded UUV swarm Multi-robot systems
在线阅读 下载PDF
MA-VoxelMorph:Multi-scale attention-based VoxelMorph for nonrigid registration of thoracoabdominal CT images
11
作者 Qing Huang Lei Ren +3 位作者 Tingwei Quan Minglei Yang Hongmei Yuan Kai Cao 《Journal of Innovative Optical Health Sciences》 2025年第1期135-151,共17页
This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualiz... This paper aims to develop a nonrigid registration method of preoperative and intraoperative thoracoabdominal CT images in computer-assisted interventional surgeries for accurate tumor localization and tissue visualization enhancement.However,fine structure registration of complex thoracoabdominal organs and large deformation registration caused by respiratory motion is challenging.To deal with this problem,we propose a 3D multi-scale attention VoxelMorph(MAVoxelMorph)registration network.To alleviate the large deformation problem,a multi-scale axial attention mechanism is utilized by using a residual dilated pyramid pooling for multi-scale feature extraction,and position-aware axial attention for long-distance dependencies between pixels capture.To further improve the large deformation and fine structure registration results,a multi-scale context channel attention mechanism is employed utilizing content information via adjacent encoding layers.Our method was evaluated on four public lung datasets(DIR-Lab dataset,Creatis dataset,Learn2Reg dataset,OASIS dataset)and a local dataset.Results proved that the proposed method achieved better registration performance than current state-of-the-art methods,especially in handling the registration of large deformations and fine structures.It also proved to be fast in 3D image registration,using about 1.5 s,and faster than most methods.Qualitative and quantitative assessments proved that the proposed MA-VoxelMorph has the potential to realize precise and fast tumor localization in clinical interventional surgeries. 展开更多
关键词 Thoracoabdominal CT image registration large deformation fine structure MULTI-SCALE attention mechanism
原文传递
A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems 被引量:25
12
作者 Xilun DING Pin GUO +1 位作者 Kun XU Yushu YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第1期200-214,共15页
Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relati... Small-scale rotorcraft unmanned robotic systems(SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years(2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem,trends, and challenges are described from three aspects. Conclusions of the paper are presented,and the future of SRURSs is discussed to enable further research interests. 展开更多
关键词 AERIAL MANIPULATION Mechanical structure design Modeling and control Research GROUPS SMALL-SCALE ROTORCRAFT unmanned AERIAL systems TRENDS and challenges
原文传递
A Path Planning Method for Robotic Belt Surface Grinding 被引量:36
13
作者 WANG Wei YUN Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期520-526,共7页
The flexible contact and machining with wide strip are two prominent advantages for the robotic belt grinding system, which can be widely used to improve the surface quality and machining efficiency while finishing th... The flexible contact and machining with wide strip are two prominent advantages for the robotic belt grinding system, which can be widely used to improve the surface quality and machining efficiency while finishing the workpieces with sculptured surfaces. There lacks research on grinding path planning with the constraint of curvature. With complicated contact between the contact wheel and the workpiece, the grinding paths for robot can be obtained by the theory of contact kinematics. The grinding process must satisfy the universal demands of the belt grinding technologies, and the most important thing is to make the contact wheel conform to the local geometrical features on the contact area. For the local surfaces with small curvature, the curve length between the neighboring cutting locations becomes longer to ensure processing efficiency. Otherwise, for the local areas with large curvature, the curve length becomes shorter to ensure machining accuracy. A series of planes are created to intersect with the target surface to be ground, and the corresponding sectional profile curves are obtained. For each curve, the curve length between the neighboring cutting points is optimized by inserting a cutter location at the local area with large curvatures. A method of generating the grinding paths including curve length spacing optimization is set up. The validity is completely approved by the off-line simulation, and during the grinding experiments with the method, the quality of surface is improved. The path planning method provides a theoretical support for the smooth and accuracy path of robotic surface grinding. 展开更多
关键词 robot programming path planning belt abrasive curve length optimization CURVATURE
原文传递
Bionic Mechanism and Kinematics Analysis of Hopping Robot Inspired by Locust Jumping 被引量:21
14
作者 Diansheng Chen Junmao Yin Kai Zhao Wanjun Zheng Tianmiao Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期429-439,共11页
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumpi... A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumping process. According to classic mechanics, the jumping process analysis was conducted to build the relationship of the locust jumping parameters. The take-offphase was divided into four stages in detail. Based on the biological observation and kinematics analysis, a mechanical model was proposed to simulate locust jumping. The forces of the flexible-rigid hopping mechanism at each stage were ana- lyzed. The kinematic analysis using pseudo-rigid-body model was described by D-H method. It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping. Moreover, the jumping angle which decides the jumping process was discussed, and its relation with other parameters was established. A calculation case analysis corroborated the method. The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance, which can provide a foundation for design and motion planning of the hopping robot. 展开更多
关键词 hopping robot flexible-rigid mechanism bionic mechanism KINEMATICS
在线阅读 下载PDF
Typical Gait Analysis of a Six-legged Robot in the Context of Metamorphic Mechanism Theory 被引量:14
15
作者 XU Kun DING Xilun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期771-783,共13页
The equivalent mechanism of the system is often considered as one specific mechanism in most existing studies of multi-legged robots, however the equivalent mechanism is varying while the robot moves on the ground. Fo... The equivalent mechanism of the system is often considered as one specific mechanism in most existing studies of multi-legged robots, however the equivalent mechanism is varying while the robot moves on the ground. Four typical tripod period gaits of a radial symmetrical six-legged robot are analyzed. Similar to the metamorphic mechanism, the locomotion of multi-legged robot is considered as a series of varying hybrid serial-parallel mechanisms by assuming the constraints of the feet on the ground with hinges. One gait cycle is divided into several periods, and in different walking period there is a specific equivalent mechanism corresponding to it, and the walking process of multi-legged robot is composed by these series of equivalent mechanisms. Walking performance can be got by analyzing these series of equivalent mechanisms. Kinematics model of the equivalent mechanism is established, workspaces of equivalent mechanisms are illustrated by simulation and a concept of static stability workspace is proposed to evaluate the static stability of these four gaits. A new method to calculate the stride length of multi-legged robots is presented by analyzing the relationship between the workspace of two adjacent equivalent parallel mechanisms in one gait cycle. The stride lengths of four gaits are given by simulations. Comparison of stride length and static stability among these four typical tripod gaits are given. It has been proved that mixed gait and insect-wave gait II have better static stability than mammal kick-off gait and insect-wave gait I. Insect-wave gait II displays its advantage on stride length while the height of robot body lower than 87 mm, mammal kick-off gait has superiority on stride length while the height of robot body higher than 115 mm, and insect-wave gait I shows its shortcoming in stride length. The proposed method based on metamorphic theory and combining the footholds and body height of robot provides a new method to comprehensive analyze the performance of multi-legged robot. 展开更多
关键词 multi-legged robot gait comparison stride length static stability
在线阅读 下载PDF
Gait Analysis of a Radial Symmetrical Hexapod Robot Based on Parallel Mechanisms 被引量:8
16
作者 XU Kun DING Xilun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期867-879,共13页
Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod... Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism.Assuming the constraints between the supporting feet and the ground with hinges,the supporting legs and the hexapod body are taken as a parallel mechanism,and each swing leg is regarded as a serial manipulator.The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground.Locomotion performance can be got by analyzing these equivalent mechanisms.The kinematics of the whole robotic system is established,and the influence of foothold position on the workspace of robot body is analyzed.A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle.Referring to service region and service sphere,weight service sphere and weight service region are put forward to evaluate the dexterity of robot body.The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated.Simulation shows when the foothold offset goes up to 174 mm,the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait.The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot,and provide new approach to determine the stride length,body height,footholds in gait planning of multi-legged robot. 展开更多
关键词 hexapod robot parallel mechanism KINEMATICS stride length DEXTERITY weight service sphere
在线阅读 下载PDF
Structure Design of Lower Limb Exoskeletons for Gait Training 被引量:14
17
作者 LI Jianfeng ZHANG Ziqiang +1 位作者 TAO Chunjing JI Run 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期878-887,共10页
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patie... Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons. 展开更多
关键词 gait training lower limb exoskeleton structure design kinematic compatibility even-constrained kinematic chain
暂未订购
Geometric Approach for Kinematic Analysis of a Class of 2-DOF Rotational Parallel Manipulators 被引量:12
18
作者 DONG Xin YU Jingjun +1 位作者 CHEN Bin ZONG Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期241-247,共7页
Euler angles are commonly used as the orientation representation of most two degrees of freedom(2-DOF) rotational parallel mechanisms(RPMs),as a result,the coupling of two angle parameters leads to complexity of k... Euler angles are commonly used as the orientation representation of most two degrees of freedom(2-DOF) rotational parallel mechanisms(RPMs),as a result,the coupling of two angle parameters leads to complexity of kinematic model of this family of mechanisms.While a simple analytical kinematic model with respect to those parameters representing the geometrical characteristics of the mechanism,is very helpful to improve the performance of RPMs.In this paper,a new geometric kinematic modeling approach based on the concept of instantaneous single-rotation-angle is proposed and used for the 2-DOF RPMs with symmetry in a homo-kinetic plane.To authors' knowledge,this is a new contribution to parallel mechanisms.By means of this method,the forwards kinematics of 2-DOF RPMs is derived in a simple way,and three cases i.e.4-4R mechanism(Omni-wrist III),spherical five-bar one,and 3-RSR1-SS one demonstrate the validity of the proposed geometric method.In addition,a novel 2-DOF RPM architecture with virtual center-of-motion is presented by aid of the same method.The result provides a useful tool for simplifying the model and extending the application of the RPMs. 展开更多
关键词 parallel manipulator KINEMATICS SINGULARITY WORKSPACE
在线阅读 下载PDF
Gait Analysis of Quadruped Robot Using the Equivalent Mechanism Concept Based on Metamorphosis 被引量:6
19
作者 Kun Xu Peijin Zi Xilun Ding 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期31-41,共11页
The previous research regarding the gait planning of quadruped robot focuses on the sequence for lifting o and placing the feet, but neglects the influence of body height. However, body height a ects gait performance ... The previous research regarding the gait planning of quadruped robot focuses on the sequence for lifting o and placing the feet, but neglects the influence of body height. However, body height a ects gait performance significantly, such as in terms of the stride length and stability margin. We herein study the performance of a quadruped robot using the equivalent mechanism concept based on metamorphosis. Assuming the constraints between standing feet and the ground with hinges, the ground, standing legs and robot body are considered as a parallel mechanism, and each swing leg is regarded as a typical serial manipulator. The equivalent mechanism varies while the robot moves on the ground. One gait cycle is divided into several periods, including step forward stages and switching stages. There exists a specific equivalent mechanism corresponding to each gait period. The robot's locomotion can be regarded as the motion of these series of equivalent mechanisms. The kinematics model and simplified model of the equivalent mechanism is established. A new definition of the multilegged robot stability margin, based on friction coe cient, is presented to evaluate the robot stability. The stable workspaces of the equivalent mechanism in the step forward stage of trotting gait under di erent friction coe cients are analyzed. The stride length of the robots is presented by analyzing the relationship between the stable workspaces of the equivalent mechanisms of two adjacent step forward stages in one gait cycle. The simulation results show that the stride length is larger with increasing friction coe cient. We herein propose a new method based on metamorphosis, and an equivalent mechanism to analyze the stability margin and stable workspace of the multilegged robot. 展开更多
关键词 QUADRUPED robot GAIT TRANSFERENCE METAMORPHOSIS METAMORPHIC MECHANISM Stability Stride length
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部