The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increas...The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increasing the Cu content,the effect of Cu on the evolution of the microstructure and morphology of the Cu-Ni alloy during undercooling was studied.The mechanism of grain refinement at different degrees of undercooling and the effect of Cu content on its solidification behaviour were investigated.The solidification behaviour of Cu55Ni45 and Cu60Ni40 alloys was investigated using infrared thermometry and high-speed photography.The results indicate that both Cu55Ni45 and Cu60Ni40 alloy melts undergo only one recalescence during rapid solidification.The degree of recalescence increases approximately linearly with increasing undercooling.The solidification front of the alloy melts undergoes a transition process from a small-angle plane to a sharp front and then to a smooth arc.However,the growth of the subcooled melt is constrained to a narrow range,facilitating the formation of a coarse dendritic crystal morphology in the Cu-Ni alloy.At large undercooling,the stress breakdown of the directionally growing dendrites is primarily caused by thermal diffusion.The strain remaining in the dendritic fragments provides the driving force for recrystallisation of the tissue to occur,which in turn refines the tissue.展开更多
Density functional theory(DFT)studies were performed on the lattice parameters,electronic band structure,and optical constants under pressure up to 20 GPa in order to obtain insight into the electronic and optical pro...Density functional theory(DFT)studies were performed on the lattice parameters,electronic band structure,and optical constants under pressure up to 20 GPa in order to obtain insight into the electronic and optical properties of LiZnAs.The calculated results show LiZnAs is a semiconductor with a direct gap of 0.86 eV,which is smaller than the experimental value 1.1 eV.It also indicates that the structural parameters such as lattice parameters and cell volume show inverse relation to the pressure and shows smooth decreasing behavior from 0 to 20 GPa.Meanwhile,the pressure dependence of the electronic band structure,density of states and partial density of states of LiZnAs up to 20 GPa were presented.And we found that the band gap increased with the pressure.Moreover,the evolution of the dielectric function,absorption coefficient a(w),reflectivity R(w),the refractive index n(w),and the extinction coefficient k(w)of LiZnAs under pressure were presented.According to our work,we found that the optical properties of LiZnAs undergo a blue shift with increasing pressure.These results suggest technological applications of such materials in extreme environments.展开更多
To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,wh...To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.展开更多
This paper presents a novel method for learning force-aware robot assembly skills,specifically targeting the peg insertion task on inclined hole.For the peg insertion task involving inclined holes,we employ one-dimens...This paper presents a novel method for learning force-aware robot assembly skills,specifically targeting the peg insertion task on inclined hole.For the peg insertion task involving inclined holes,we employ one-dimensional convolutional networks(1DCNN)and gated recurrent units(GRU)to extract features from the time-series force information during the assembly process,thereby identifying different contact states between the peg and the hole.Subsequent to the identification of contact states,corresponding pose adjustments are executed,and overall smooth interaction is ensured through admittance control.The assembly process is dynamically adjusted using a state machine to fine-tune admittance control parameters and seamlessly switch the assembly state.Through the utilization of dual-arm clamping,we conduct key unlocking experiments on bases inclined at varying degrees.Our results demonstrate that the proposed method significantly improves the accuracy and success rate of state recognition compared to previous methods.展开更多
Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform analysis in an interactive way through the software development process, which has a high pe...Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform analysis in an interactive way through the software development process, which has a high performance requirement. This paper concentrates on rule-based static analysis tools and proposes an optimized rule-checking algorithm. Our technique improves the performance of static analysis tools by filtering vulnerability rules in terms of characteristic objects before checking source files. Since a source file always contains vulnerabilities of a small part of rules rather than all, our approach may achieve better performance. To investigate our technique's feasibility and effectiveness, we implemented it in an open source static analysis tool called PMD and used it to conduct experiments. Experimental results show that our approach can obtain an average performance promotion of 28.7% compared with the original PMD. While our approach is effective and precise in detecting vulnerabilities, there is no side effect.展开更多
A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of...A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.展开更多
基金Funded by the Basic Research Project in Shanxi Province(No.202103021224183)the 2024 Science and Technology PlanProject of Jiaozuo City,Henan Province(No.2024410001)。
文摘The evolution of the microstructure and morphology of Cu55Ni45 and Cu60Ni40 alloys under varying degrees of undercooling was investigated through molten glass purification and cyclic superheating technology.By increasing the Cu content,the effect of Cu on the evolution of the microstructure and morphology of the Cu-Ni alloy during undercooling was studied.The mechanism of grain refinement at different degrees of undercooling and the effect of Cu content on its solidification behaviour were investigated.The solidification behaviour of Cu55Ni45 and Cu60Ni40 alloys was investigated using infrared thermometry and high-speed photography.The results indicate that both Cu55Ni45 and Cu60Ni40 alloy melts undergo only one recalescence during rapid solidification.The degree of recalescence increases approximately linearly with increasing undercooling.The solidification front of the alloy melts undergoes a transition process from a small-angle plane to a sharp front and then to a smooth arc.However,the growth of the subcooled melt is constrained to a narrow range,facilitating the formation of a coarse dendritic crystal morphology in the Cu-Ni alloy.At large undercooling,the stress breakdown of the directionally growing dendrites is primarily caused by thermal diffusion.The strain remaining in the dendritic fragments provides the driving force for recrystallisation of the tissue to occur,which in turn refines the tissue.
文摘Density functional theory(DFT)studies were performed on the lattice parameters,electronic band structure,and optical constants under pressure up to 20 GPa in order to obtain insight into the electronic and optical properties of LiZnAs.The calculated results show LiZnAs is a semiconductor with a direct gap of 0.86 eV,which is smaller than the experimental value 1.1 eV.It also indicates that the structural parameters such as lattice parameters and cell volume show inverse relation to the pressure and shows smooth decreasing behavior from 0 to 20 GPa.Meanwhile,the pressure dependence of the electronic band structure,density of states and partial density of states of LiZnAs up to 20 GPa were presented.And we found that the band gap increased with the pressure.Moreover,the evolution of the dielectric function,absorption coefficient a(w),reflectivity R(w),the refractive index n(w),and the extinction coefficient k(w)of LiZnAs under pressure were presented.According to our work,we found that the optical properties of LiZnAs undergo a blue shift with increasing pressure.These results suggest technological applications of such materials in extreme environments.
基金Supported by the National Natural Science Foundation of China(No.11672290)
文摘To eliminate the load weight limit of carrier rockets and reduce the burden on support structures,in-orbit assembly is a key technology to make design of scattering a large diameter telescope into submirror modules,which requires smooth operation of assembly robots,and flexible force control technology is necessary. A ground demonstration system is presented for in-orbit assembly focusing on flexible force control. A six-dimensional force/torque sensor and its data acquisition system are used to compensate for gravity. For translation and rotation,an algorithm for flexible control is proposed. A ground transportation demonstration verifies accuracy and smoothness of flexible force control,and the transportation and assembly task is completed automatically. The proposed system is suitable for the development of in-orbit assembly robots.
基金supported by the National Key R&D Program of China(2022YFB4701502)the“Leading Goose”R&D Program of Zhejiang(2023C01177)the 2035 Key Technological Innovation Program of Ningbo City(2024Z300).
文摘This paper presents a novel method for learning force-aware robot assembly skills,specifically targeting the peg insertion task on inclined hole.For the peg insertion task involving inclined holes,we employ one-dimensional convolutional networks(1DCNN)and gated recurrent units(GRU)to extract features from the time-series force information during the assembly process,thereby identifying different contact states between the peg and the hole.Subsequent to the identification of contact states,corresponding pose adjustments are executed,and overall smooth interaction is ensured through admittance control.The assembly process is dynamically adjusted using a state machine to fine-tune admittance control parameters and seamlessly switch the assembly state.Through the utilization of dual-arm clamping,we conduct key unlocking experiments on bases inclined at varying degrees.Our results demonstrate that the proposed method significantly improves the accuracy and success rate of state recognition compared to previous methods.
基金Project supported by the National High-Tech R&D Program(863)of China(No.2013AA12A202)the National Natural Science Foundation of China(Nos.61172173,41501505,and 61502205)+1 种基金the Natural Science Foundation of Hubei Province,China(No.2014CFB779)the Youths Science Foundation of Wuhan Institute of Technology(No.K201546)
文摘Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform analysis in an interactive way through the software development process, which has a high performance requirement. This paper concentrates on rule-based static analysis tools and proposes an optimized rule-checking algorithm. Our technique improves the performance of static analysis tools by filtering vulnerability rules in terms of characteristic objects before checking source files. Since a source file always contains vulnerabilities of a small part of rules rather than all, our approach may achieve better performance. To investigate our technique's feasibility and effectiveness, we implemented it in an open source static analysis tool called PMD and used it to conduct experiments. Experimental results show that our approach can obtain an average performance promotion of 28.7% compared with the original PMD. While our approach is effective and precise in detecting vulnerabilities, there is no side effect.
基金This work is partially supported by the National Natural Science Foundation of China under Grant No. 11672290. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.
文摘A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.