Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance th...Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.展开更多
基金supported by the National Natural Science Foundation of China(U23A20605)Anhui Graduate Innovation and Entrepreneurship Practice Project(2022cxcysj090)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202202)the University Synergy Innovation Program of Anhui Province(GXXT-2020-072)the Outstanding Youth Fund of Anhui Province(2208085J19).
文摘Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.