Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mec...Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mechanistic risk models. This study demonstrated large-scale and high-resolution modelling of wind damage vulnerability in Norway. The hybrid mechanistic wind damage model, ForestGALES, was adapted to map the critical wind speeds(CWS) of damage across Norway using a national forest attribute map at a 16 m × 16 m spatial resolution. P arametrization of the model for the Norwegian context was done using the literature and the National Forest Inventory data. This new parametrization of the model for Norwegian forests yielded estimates of CWS significantly different from the default parametrization. Both parametrizations fell short of providing acceptable discrimination of the damaged area following the storm of November 19, 2021 in the central southern region of Norway when using unadjusted CWS. After adjusting the CWS and the storm wind speeds by a constant factor, the Norwegian parametrization provided acceptable discrimination and was thus defined as suitable to use in future studies, despite the lack of field-and laboratory experiments to directly derive parameters for Norwegian forests. The windstorm event used for model validation in this study highlighted the challenges of predicting wind damage to forests in landscapes with complex topography. Future studies should focus on further developing ForestGALES and new datasets describing extreme wind climates to better represent the wind and tree interactions in complex topography, and predict the level of risk in order to develop local climate-smart forest management strategies.展开更多
Overseas study for university teachers is a crucial path for their professional development and an effective means to enhance the level of education internationalization.However,the effectiveness of these studies is i...Overseas study for university teachers is a crucial path for their professional development and an effective means to enhance the level of education internationalization.However,the effectiveness of these studies is influenced by the various factors,including pre⁃study selection and preparation,management and support in the study period,application and assessment of study outcomes afterward,as well as personal factors such as age,family background,and education experience.This paper aims to explore the impact of these factors on the effectiveness of teachers′international education studies and propose the corresponding improvement suggestions,in order to provide a reference for improving the quality and effectiveness of teachers′studies.展开更多
The Kuye River Basin has experienced a rapid depletion of groundwater due to the increased coal production.In this study,by introducing the empirical equations derived from the three zone theory in the coal mining ind...The Kuye River Basin has experienced a rapid depletion of groundwater due to the increased coal production.In this study,by introducing the empirical equations derived from the three zone theory in the coal mining industry in China as a boundary condition,a calculation model was developed by coupling the soil and water assessment tool and visual modular three-dimensional finite-difference ground-water flow model(SWAT-VISUAL MODFLOW).The model was applied to several coal mines in the basin to quantify the groundwater impact of underground mining.For illustration purposes,two underground water observation stations and one water level station were selected for groundwater change simulation in 2009,producing the results that agreed well with the observed data.We found that groundwater level was closely related to the height of the fractured water-conducting zone caused by underground mining,and a higher height led to a lower groundwater level.This finding was further supported by the calculation that underground mining was responsible for 23.20mm aquifer breakages in 2009.Thus,preventing surface subsidence due to underground mining can help protecting the basin's groundwater.展开更多
Climate change significantly affects environment,ecosystems,communities,and economies.These impacts often result in quick and gradual changes in water resources,environmental conditions,and weather patterns.A geograph...Climate change significantly affects environment,ecosystems,communities,and economies.These impacts often result in quick and gradual changes in water resources,environmental conditions,and weather patterns.A geographical study was conducted in Arizona State,USA,to examine monthly precipi-tation concentration rates over time.This analysis used a high-resolution 0.50×0.50 grid for monthly precip-itation data from 1961 to 2022,Provided by the Climatic Research Unit.The study aimed to analyze climatic changes affected the first and last five years of each decade,as well as the entire decade,during the specified period.GIS was used to meet the objectives of this study.Arizona experienced 51–568 mm,67–560 mm,63–622 mm,and 52–590 mm of rainfall in the sixth,seventh,eighth,and ninth decades of the second millennium,respectively.Both the first and second five year periods of each decade showed accept-able rainfall amounts despite fluctuations.However,rainfall decreased in the first and second decades of the third millennium.and in the first two years of the third decade.Rainfall amounts dropped to 42–472 mm,55–469 mm,and 74–498 mm,respectively,indicating a downward trend in precipitation.The central part of the state received the highest rainfall,while the eastern and western regions(spanning north to south)had significantly less.Over the decades of the third millennium,the average annual rainfall every five years was relatively low,showing a declining trend due to severe climate changes,generally ranging between 35 mm and 498 mm.The central regions consistently received more rainfall than the eastern and western outskirts.Arizona is currently experiencing a decrease in rainfall due to climate change,a situation that could deterio-rate further.This highlights the need to optimize the use of existing rainfall and explore alternative water sources.展开更多
Oyster farming provides substantial ecological and economic benefits but is often constrained by the challenges of selecting suitable sites in dynamic coastal environments.This study presents a tailored oyster suitabi...Oyster farming provides substantial ecological and economic benefits but is often constrained by the challenges of selecting suitable sites in dynamic coastal environments.This study presents a tailored oyster suitability index(OSI)for the Zhujiang(Pearl)River Estuary(PRE),developed using Landsat satellite imagery and in situ observations collected from 2013 to 2023.Key environmental parameters,including sea surface temperature(SST),salinity,turbidity,and chlorophyll-a(Chl-a)concentration,were integrated for OSI retrieval.Optimal algorithms for each parameter were identified through evaluation using field measurements,yielding high accuracy,as evidenced by strong determination coefficients(R^(2))and low root mean square error(RMSE):R^(2)=0.98,RMSE=0.74℃for SST;R^(2)=0.94,RMSE=0.50 for salinity;R^(2)=0.95,RMSE=1.21 mg/m^(3)for Chl-a;R^(2)=0.91,RMSE=1.48 NTU for turbidity.The OSI revealed pronounced seasonal and spatial variability,with the highest suitability observed during winter and the lowest during summer.Validation results demonstrated strong alignment between OSI predictions and existing oyster farming zones.These findings underscore the value of remote sensing for scalable,near-real-time aquaculture site assessments.The OSI framework provides a robust decision-support tool for optimizing oyster cultivation,promoting sustainable aquaculture development in dynamic estuarine systems such as the PRE and beyond.展开更多
Objective:To investigate the osteogenic effects of polyphenol-rich extracts from Wisteria floribunda(Willd.)DC.(W.floribunda)flowers and elucidate the underlying mechanisms.Methods:Polyphenolic compounds of W.floribun...Objective:To investigate the osteogenic effects of polyphenol-rich extracts from Wisteria floribunda(Willd.)DC.(W.floribunda)flowers and elucidate the underlying mechanisms.Methods:Polyphenolic compounds of W.floribunda extracts were analyzed,including flavonoids and glucoside derivatives.Osteogenic activity was assessed in MC3T3-E1 preosteoblast cells by measurement of alkaline phosphatase(ALP)activity,alizarin red S staining,and the expression of osteogenic markers(RUNX2,SP7,and ALPL).In vivo effects were evaluated in zebrafish larvae by assessing skeletal development and expression of osteogenic genes(runx2a,sp7,and alpl).The role of mammalian target of rapamycin(mTOR)pathway was examined using rapamycin.Results:W.floribunda extracts significantly enhanced ALP activity,bone mineralization,and the expression of RUNX2,SP7,and ALPL in MC3T3-E1 cells.In zebrafish larvae,W.floribunda extracts improved vertebral mineralization and upregulated osteogenic genes.Mechanistically,the plant extract activated the mTOR pathway,and rapamycin treatment attenuated the extracts-induced ALP activity,mineralization,and vertebral formation in zebrafish,confirming mTOR involvement.Conclusions:W.floribunda extracts promote osteoblast differentiation and bone formation via mTOR pathway activation.These findings provide novel insights into the potential of W.floribunda extracts and support its further investigation as a natural therapeutic candidate for bone degenerative disorders such as osteoporosis.展开更多
Agriculture is the major activity in the state of Haryana and large volume of water is required to meet the irrigation demands of the crops grown. But, there is limited water availability in the state. Haryana receive...Agriculture is the major activity in the state of Haryana and large volume of water is required to meet the irrigation demands of the crops grown. But, there is limited water availability in the state. Haryana receives water from Yamuna River and Bhakra system. Sowmelt, rainfall and groundwater are main sources of water in the catchment. It is essential to integrate the manmade canal system with hydrological system. This paper focuses on integrated hydrological modeling framework to conceptualize the system and to assess the Water Resources of the state. Snowmelt and Rainfall runoff modeling using GR4JSG model were combined to model the inflows to the irrigation system of Haryana. Irrigator canal model of eWater Source has been used to generate water demands from crops grown. The water balance and water use efficiency have been worked out for each district of Haryana. The hydro climate input data, stream flows, crop data and soil data have been used in the study. The flows modeled at Tuini (P), Yashwant Nagar, Bausan, Haripur, Poanta and HKB sites were compared with the observed flows. The objective function of NSE Daily and log Flow duration was used for model calibration and validation at various locations up to Mathura, the outlet of the study area. The value of the objective function at Mathura was 0.54, a fairly good value. The results of the Irrigator canal model have shown that all the Inflows, Outflows and the Utilizations of water have been properly balanced for each district. The water use efficiency of districts varies from 27% to 59%. The overall water use efficiency for Haryana canal system has been calculated as 39%. This is low value indicating excess water is being extracted to meet the water demands.展开更多
The most useful indicators should be established, designed and customized based on local issues of a target area. In order to establish groundwater sustainability indicators for the Vietnam capital, Hanoi, in this stu...The most useful indicators should be established, designed and customized based on local issues of a target area. In order to establish groundwater sustainability indicators for the Vietnam capital, Hanoi, in this study, the sustainability assessment framework of groundwater resources from an economic perspective is proposed for the first time with the focus of Hanoi current groundwater problems. An AHP (Analytical Hierarchy Process) approach is employed to generate the main components (aspects and indicators) of this framework, because development of composite indicators is considered to be a best approach for sustainability evaluation. To do this, the current problems of Hanoi groundwater resources were carefully reviewed and explored to propose three main aspects (quantity, quality and management) and appropriately construct their 9 MESIs (Macroeconomic Sustainability Indicators). As for the results, the sustainability indices of the quantity, quality and management aspects were appropriately assessed as good, excellent and good sustainability levels, respectively. As a result, the sustainability of Hanoi groundwater resources development is economically good, indicating that there has been a big effort to improve the groundwater sustainability from both sides, the local government and communities.展开更多
Degradation of the physical quality of the soil is a common problem encountered in agrosystems, particularly in the case of open field cropping systems in the northern areas of Côte d’Ivoire. Thus, the struc...Degradation of the physical quality of the soil is a common problem encountered in agrosystems, particularly in the case of open field cropping systems in the northern areas of Côte d’Ivoire. Thus, the structural stability of the soil, which is a good indicator of the sensitivity to threshing and to water erosion in relation to the accumulation of organic matter, was evaluated in two types of soil (Ferralsol and Cambisol) in cashew orchards, in two villages (Mahana and Sanankoro) producing cashew nuts, located the Department of Touba in the North West of Côte d’Ivoire. The objective of this study is to develop new technical routes that are better suited to further promote the sequestration of organic carbon in the soil. Soil samples were taken from open soil profiles at the two chosen sites to allow laboratory analyzes. The results indicate that the surface horizon of Cambisol (site 1) is more stable (Is = 0.78) than that of Ferralsol (site 2;Is = 1.08) with nevertheless relatively small thicknesses of horizons. The median horizons and those of depth, indicate a mediocre stability (Is vary from 1.03 to 1.62). In terms of the quantity of organic carbon, the estimated values vary from 1.96 to 4.53 t⋅ha−1 for Cambisol (site 1) and from 1.44 to 3.46 t⋅ha−1 for Ferralsol (site 2). These values remain relatively low especially at the level of the median horizons and those located in depths. Statistical tests have shown a very highly significant and negative association between the structural stability of soils and the amount of organic carbon in the different horizons. The relationship implies that organic carbon plays an important role in the structural stability of soil horizons under cashew tree orchards.展开更多
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s...Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results.展开更多
To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable is...To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.展开更多
Protoplast-based transient gene expression system has been widely used in plant genome editing because of its simple operation and less time-consuming.In order to establish a universal protoplast-based transient trans...Protoplast-based transient gene expression system has been widely used in plant genome editing because of its simple operation and less time-consuming.In order to establish a universal protoplast-based transient transfection system for verifying activities of genome editing vectors containing targets in Brassica,we systematically optimized factors affecting protoplast isolation and transient gene expression.We established an efficient protoplast-based transient gene expression system(PTGE)in Chinese cabbage,achieving high protoplast yield of 4.9×10^(5)·g^(-1)FW,viability over 95%,and transfection efficiency of 76%.We showed for the first time that pretreatment of protoplasts with a hypotonic MMG could significantly enhance the transfection efficiency.Furthermore,protoplasts incubated at 37℃ for 6 min improved the transfection efficiency to 86%.We also demonstrated that PTGE worked well(more than 50%transfection efficiency)in multiple Brassica species including cabbage,Pak Choi,Chinese kale,and turnip.Finally,PTGE was used for validating the activities of CRISPR/Cas9 vectors containing targets in Chinese cabbage,cabbage,and pak choi,demonstrating the broad applicability of the established PTGE for genome editing in Brassica crops.展开更多
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
Pre-formed V7-type short amylose(SA)could interact with curcumin to form inclusion complex(IC)thereby to improve the stability of curcumin.However,the complexation mechanism of V7-type SA and curcumin is not clear,whi...Pre-formed V7-type short amylose(SA)could interact with curcumin to form inclusion complex(IC)thereby to improve the stability of curcumin.However,the complexation mechanism of V7-type SA and curcumin is not clear,which limit the improvement of inclusion efficiency.To obtain a starch nanocarrier with high loading capacity,the encapsulation process and interaction parameters of V7-type SA-curcumin IC was studied.The analysis results demonstrated that stoichiometric ratio value of the SA-curcumin complex was around 1.V7-type SA performed excellently in the delivery of curcumin attributing to their high loading capacity(over 20%).It was found that curcumin could enter into the pre-formed helical cavity of SA to form an IC.The conformation change of SA caused the reduction in the interaction ratio in the last 20 ns of simulation.However,SA and curcumin always remained complexation status during the simulation.Hydrogen bonds(H-bonds)and hydrophobic interaction were the most critical acting forces involved in the formation and stability of V7-type SA-curcumin complex.Molecular docking presented that H-bonds interaction between curcumin ligand and V7-type SA chain(O3 at the 25th glucose unit,and O6 at the 17th and 20th glucose units)were found.Furthermore,the hydrophobic interactions were discovered between curcumin ligand and SA chain(18th,19th,21st,22nd and 23rd glucose units).展开更多
Wetland landscapes have undergone tremendous changes and the spatial heterogeneity of wetlands has increased.It’s a huge challenge to accurately assess the effect of human disturbance on the landscape patterns in suc...Wetland landscapes have undergone tremendous changes and the spatial heterogeneity of wetlands has increased.It’s a huge challenge to accurately assess the effect of human disturbance on the landscape patterns in such a complex environment.This paper,taking the Yellow River Delta as a case,proposed a new framework to evaluate the heterogeneity effect of human disturbances on landscape patterns.A pixel-based Human Disturbance Index(HDI)with the addition of ecological conditions and the buffer influence is first established to quantify the spatial difference of human disturbances.Besides,Geographically Weighted Regression(GWR)model was introduced to analyze the spatial correlation between HDI and landscape indices,i.e.,Shannon’s Diversity Index(SHDI),Contagion Index(CONTAG),and Area-Weighted Mean Shape Index(SHAPEAM),which strongly correlated with HDI.The results show that HDI in the Yellow River Delta has increased gradually and its spatial heterogeneity has continued to increase in the past 30 years.The increase of human disturbances mainly occurred in coastal areas due to H-level human disturbances in Dongying Port and M-H level human disturbances along the coast.But in most areas inland of study area,the HDI reduced slightly benefit from the wetland conservation measurements.The landscape pattern in the Yellow River Delta wetland has changed tremendously.The spatial heterogeneity of landscapes is enhanced,and the connectivity is reduced.Patches tend to be regularized.Different levels of human disturbance have different effects on the landscape patterns.The M-H level HDI leads to low landscape different and more connected.While the H level HDI leads to stronger landscape heterogeneity,complex patch shapes and decreased spatial connectivity.These implicate the proposed framework is efficient for evaluating the heterogeneity effect of human disturbance and landscape patterns in a complex wetland ecosystem.These methods and findings will provide suggestions and guidance for wetland conservation and management.展开更多
The present study focuses on the analysis and description of lineaments interpreted as secondary structures to describe the nature of Senegalo Malian Discontinuity. These lineaments cross-cut the large north-south ori...The present study focuses on the analysis and description of lineaments interpreted as secondary structures to describe the nature of Senegalo Malian Discontinuity. These lineaments cross-cut the large north-south oriented transcurrent lithospheric structure known as the Senegalo Malian Discontinuity (SMD). Two lineaments were selected oriented NNE (N15˚ to N25˚), one at Dialafara and one at Sadiola. Four profiles on each lineament of these 2 zones, so that there were 2 on each side of the SMD. The ground data collected were processed using proper parameter and software. Some filters were applied to enhance the signal level. These ground data were later compared to the existing airborne magnetic data for consistency and accuracy using the upward continuation filter. The results show that the quality of ground data is good. In addition, the ground magnetic data show the presence of certain local anomalies that are not visible in the regional data. The analytical signal was also used to determine domain boundaries or possible contact zones. The contact zone can be highlighted on certain profiles such as L300 and L600. The study showed that the west and east sides of the SMD are not the same. Secondary structures become wide when approaching the SMD on both sides. They are also duplicated to the east of the SMD when we move progressively away. In the Dialafara area, the ground magnetic data intersect an interpreted fold. The results of this work confirm the presence of the secondary structures and their evolution in relation to the SMD. The relationships between the secondary structures in the Dailafara and Sadiola zones and their relations with the SMD are highlighted. The technique used in this study, is an important approach to better description and interpreting of regional structures using the secondary structures and proposing a structural model.展开更多
1|INTRODUCTION The events of the coronavirus disease 2019 pandemic have emphasized the indispensable role of doctors in promoting public health and well-being[1].Although medicine and health care are being transformed...1|INTRODUCTION The events of the coronavirus disease 2019 pandemic have emphasized the indispensable role of doctors in promoting public health and well-being[1].Although medicine and health care are being transformed by technological advances,such as artificial intelligence,big data,genomics,precision medicine,and telemedicine,doctors continue to play a critical role in providing health care.展开更多
South Korea has experienced drought cycles every 5 to 7 years since 1970, with a severe drought lasting five years from 2013 to 2018. To prepare for these recurring drought risks, the South Korean government deliberat...South Korea has experienced drought cycles every 5 to 7 years since 1970, with a severe drought lasting five years from 2013 to 2018. To prepare for these recurring drought risks, the South Korean government deliberated and approved a comprehensive drought response plan in August 2017. As part of this plan, research on a national-scale drought vulnerability assessment and the development of a drought vulnerability map was initiated to enhance proactive drought response measures. The objective of this study is to develop a methodology for assessing drought vulnerability, conduct a nationwide drought vulnerability evaluation, and visualize the results through a drought vulnerability map to assist in decision-making and information sharing. The drought vulnerability assessment was based on the water supply capacity of regional water systems under different scenarios, with exposure, sensitivity, and secondary water resource capacity quantified and weighted in the evaluation. As a result of conducting a drought vulnerability assessment on 250 municipalities nationwide, regions that rely primarily on river or groundwater source for water intake were found to be more vulnerable to drought than those supplied by dams. Furthermore, municipalities located along the east coast, where rivers tend to be steep and short, exhibited higher vulnerability to drought.展开更多
SWAT model is one of the primary tools for assessing irrigation district water management and water-saving measures.However,its incapacity to consider the diverse growth and water requirements of paddy during various ...SWAT model is one of the primary tools for assessing irrigation district water management and water-saving measures.However,its incapacity to consider the diverse growth and water requirements of paddy during various growth stages,as well as the insufficient availability of external water sources.This study introduces the Penman-Monteith equation and Jensen model into the SWAT framework,setting crop coefficients,crop base coefficients,and growth stage sensitivity indices based on the different growth stage.Additionally,modifications are made to the external water source available for irrigation and paddyfield leakage modules,establishing a distributed agricultural hydrological model suitable for accurately simulating water balance elements and paddy yield in multi-source irrigation districts.The Yangshudang watershed in the Zhanghe irrigation district is chosen for the evaluation of the modified model's simulation performance,with a quantitative assessment of water-saving and yield-increasing effects.The results demonstrate that the modified model effectively meets the requirements for simulating paddy evapotranspiration of various growth stages,yield,agricultural irrigation water consumptions,and runoff,exhibiting a notable enhancement in performance.As two common water-saving measures in irrigation areas,inter-mittent irrigation and irrigation district renovation were used as two water-saving scenarios in the simulation of the modified SWAT model.Under intermittent irrigation,the watershed experiences a 6.58%reduction in net irrigation water use.In the scenario with irrigation district renovation,the water resources in the watershed are utilized more efficiently.The modified model from this study can be applied for assessing the synergistic effects of irrigation district water-saving and yield-increasing measures,providing crucial insights for the formulation of irri-gation district water-saving strategies and water resource optimization plans.展开更多
Purpose: Diet and eating habits are major risk factors for the health and the development of disease, such as, for example, metabolic disorder leading to cardiovascular pathology and cancer, decreased immunity exposin...Purpose: Diet and eating habits are major risk factors for the health and the development of disease, such as, for example, metabolic disorder leading to cardiovascular pathology and cancer, decreased immunity exposing to infections. This study of the physico-chemical and nutritional properties of a soumara-based food broth was carried out with the aim of promoting the consumption of organic broth made from nere seeds (soumara). That is to alleviate certain metabolic diseases, which is a matter of food safety, and also to limit the risk for the health about the consumption of some cooking stocks on the market. Methods: Several natural ingredients such as nere seeds (soumara), ginger, black pepper, parsley and garlic were used to create a nere-based stock. All these ingredients were freeze-dried and the powder obtained was used to make the broth, regarding their physical and chemical properties. Results: The broth had a good protein content of 17.41 ± 0.367 g/100g, a lipid content of 16.80 ± 0.08 g/100g and a fiber content of 8.66 ± 0.04 g/100g. In terms of nutritional values, the broth showed good levels of calcium 184.21 ± 0.09 mg/100g, potassium 50.04 ± 1.45 mg/100g and iron and zinc. In terms of antioxidant activity, the broth also showed good antioxidant activity. Conclusion: Regarding the properties of our food broth, whose composition is based on natural ingredients, could be recommended for consumption and, its properties, could play an important role in preventing and combating certain metabolic diseases.展开更多
基金funded by the Norwegian Research Council(NFR project 302701 Climate Smart Forestry Norway).
文摘Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mechanistic risk models. This study demonstrated large-scale and high-resolution modelling of wind damage vulnerability in Norway. The hybrid mechanistic wind damage model, ForestGALES, was adapted to map the critical wind speeds(CWS) of damage across Norway using a national forest attribute map at a 16 m × 16 m spatial resolution. P arametrization of the model for the Norwegian context was done using the literature and the National Forest Inventory data. This new parametrization of the model for Norwegian forests yielded estimates of CWS significantly different from the default parametrization. Both parametrizations fell short of providing acceptable discrimination of the damaged area following the storm of November 19, 2021 in the central southern region of Norway when using unadjusted CWS. After adjusting the CWS and the storm wind speeds by a constant factor, the Norwegian parametrization provided acceptable discrimination and was thus defined as suitable to use in future studies, despite the lack of field-and laboratory experiments to directly derive parameters for Norwegian forests. The windstorm event used for model validation in this study highlighted the challenges of predicting wind damage to forests in landscapes with complex topography. Future studies should focus on further developing ForestGALES and new datasets describing extreme wind climates to better represent the wind and tree interactions in complex topography, and predict the level of risk in order to develop local climate-smart forest management strategies.
基金supported by the Higher Education Research Fund Project of Northwestern Polytechnical(International Talent Cultivation Special Project)(GJGZMS202309).University。
文摘Overseas study for university teachers is a crucial path for their professional development and an effective means to enhance the level of education internationalization.However,the effectiveness of these studies is influenced by the various factors,including pre⁃study selection and preparation,management and support in the study period,application and assessment of study outcomes afterward,as well as personal factors such as age,family background,and education experience.This paper aims to explore the impact of these factors on the effectiveness of teachers′international education studies and propose the corresponding improvement suggestions,in order to provide a reference for improving the quality and effectiveness of teachers′studies.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC3201103-01Project Funds of Administration for Market Regulation Henan Province,Grant/Award Number:20241110011+1 种基金Special Funding for Basic Research Expenses for Central Government Departmentaffiliated Institutes,Grant/Award Number:HKYJBYW-2024-06The Open Foundation of the Yellow River Institute of Hydraulic Research,Grant/Award Number:LYBEPR202206。
文摘The Kuye River Basin has experienced a rapid depletion of groundwater due to the increased coal production.In this study,by introducing the empirical equations derived from the three zone theory in the coal mining industry in China as a boundary condition,a calculation model was developed by coupling the soil and water assessment tool and visual modular three-dimensional finite-difference ground-water flow model(SWAT-VISUAL MODFLOW).The model was applied to several coal mines in the basin to quantify the groundwater impact of underground mining.For illustration purposes,two underground water observation stations and one water level station were selected for groundwater change simulation in 2009,producing the results that agreed well with the observed data.We found that groundwater level was closely related to the height of the fractured water-conducting zone caused by underground mining,and a higher height led to a lower groundwater level.This finding was further supported by the calculation that underground mining was responsible for 23.20mm aquifer breakages in 2009.Thus,preventing surface subsidence due to underground mining can help protecting the basin's groundwater.
文摘Climate change significantly affects environment,ecosystems,communities,and economies.These impacts often result in quick and gradual changes in water resources,environmental conditions,and weather patterns.A geographical study was conducted in Arizona State,USA,to examine monthly precipi-tation concentration rates over time.This analysis used a high-resolution 0.50×0.50 grid for monthly precip-itation data from 1961 to 2022,Provided by the Climatic Research Unit.The study aimed to analyze climatic changes affected the first and last five years of each decade,as well as the entire decade,during the specified period.GIS was used to meet the objectives of this study.Arizona experienced 51–568 mm,67–560 mm,63–622 mm,and 52–590 mm of rainfall in the sixth,seventh,eighth,and ninth decades of the second millennium,respectively.Both the first and second five year periods of each decade showed accept-able rainfall amounts despite fluctuations.However,rainfall decreased in the first and second decades of the third millennium.and in the first two years of the third decade.Rainfall amounts dropped to 42–472 mm,55–469 mm,and 74–498 mm,respectively,indicating a downward trend in precipitation.The central part of the state received the highest rainfall,while the eastern and western regions(spanning north to south)had significantly less.Over the decades of the third millennium,the average annual rainfall every five years was relatively low,showing a declining trend due to severe climate changes,generally ranging between 35 mm and 498 mm.The central regions consistently received more rainfall than the eastern and western outskirts.Arizona is currently experiencing a decrease in rainfall due to climate change,a situation that could deterio-rate further.This highlights the need to optimize the use of existing rainfall and explore alternative water sources.
基金The Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP308the National Natural Science Foundation of China under contract Nos 42176173 and 42476268+1 种基金the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311020004Guangdong Geographical Science Data Center under contract No.2021B1212100003.
文摘Oyster farming provides substantial ecological and economic benefits but is often constrained by the challenges of selecting suitable sites in dynamic coastal environments.This study presents a tailored oyster suitability index(OSI)for the Zhujiang(Pearl)River Estuary(PRE),developed using Landsat satellite imagery and in situ observations collected from 2013 to 2023.Key environmental parameters,including sea surface temperature(SST),salinity,turbidity,and chlorophyll-a(Chl-a)concentration,were integrated for OSI retrieval.Optimal algorithms for each parameter were identified through evaluation using field measurements,yielding high accuracy,as evidenced by strong determination coefficients(R^(2))and low root mean square error(RMSE):R^(2)=0.98,RMSE=0.74℃for SST;R^(2)=0.94,RMSE=0.50 for salinity;R^(2)=0.95,RMSE=1.21 mg/m^(3)for Chl-a;R^(2)=0.91,RMSE=1.48 NTU for turbidity.The OSI revealed pronounced seasonal and spatial variability,with the highest suitability observed during winter and the lowest during summer.Validation results demonstrated strong alignment between OSI predictions and existing oyster farming zones.These findings underscore the value of remote sensing for scalable,near-real-time aquaculture site assessments.The OSI framework provides a robust decision-support tool for optimizing oyster cultivation,promoting sustainable aquaculture development in dynamic estuarine systems such as the PRE and beyond.
基金supported by the 2024 scientific promotion program funded by Jeju National University.
文摘Objective:To investigate the osteogenic effects of polyphenol-rich extracts from Wisteria floribunda(Willd.)DC.(W.floribunda)flowers and elucidate the underlying mechanisms.Methods:Polyphenolic compounds of W.floribunda extracts were analyzed,including flavonoids and glucoside derivatives.Osteogenic activity was assessed in MC3T3-E1 preosteoblast cells by measurement of alkaline phosphatase(ALP)activity,alizarin red S staining,and the expression of osteogenic markers(RUNX2,SP7,and ALPL).In vivo effects were evaluated in zebrafish larvae by assessing skeletal development and expression of osteogenic genes(runx2a,sp7,and alpl).The role of mammalian target of rapamycin(mTOR)pathway was examined using rapamycin.Results:W.floribunda extracts significantly enhanced ALP activity,bone mineralization,and the expression of RUNX2,SP7,and ALPL in MC3T3-E1 cells.In zebrafish larvae,W.floribunda extracts improved vertebral mineralization and upregulated osteogenic genes.Mechanistically,the plant extract activated the mTOR pathway,and rapamycin treatment attenuated the extracts-induced ALP activity,mineralization,and vertebral formation in zebrafish,confirming mTOR involvement.Conclusions:W.floribunda extracts promote osteoblast differentiation and bone formation via mTOR pathway activation.These findings provide novel insights into the potential of W.floribunda extracts and support its further investigation as a natural therapeutic candidate for bone degenerative disorders such as osteoporosis.
文摘Agriculture is the major activity in the state of Haryana and large volume of water is required to meet the irrigation demands of the crops grown. But, there is limited water availability in the state. Haryana receives water from Yamuna River and Bhakra system. Sowmelt, rainfall and groundwater are main sources of water in the catchment. It is essential to integrate the manmade canal system with hydrological system. This paper focuses on integrated hydrological modeling framework to conceptualize the system and to assess the Water Resources of the state. Snowmelt and Rainfall runoff modeling using GR4JSG model were combined to model the inflows to the irrigation system of Haryana. Irrigator canal model of eWater Source has been used to generate water demands from crops grown. The water balance and water use efficiency have been worked out for each district of Haryana. The hydro climate input data, stream flows, crop data and soil data have been used in the study. The flows modeled at Tuini (P), Yashwant Nagar, Bausan, Haripur, Poanta and HKB sites were compared with the observed flows. The objective function of NSE Daily and log Flow duration was used for model calibration and validation at various locations up to Mathura, the outlet of the study area. The value of the objective function at Mathura was 0.54, a fairly good value. The results of the Irrigator canal model have shown that all the Inflows, Outflows and the Utilizations of water have been properly balanced for each district. The water use efficiency of districts varies from 27% to 59%. The overall water use efficiency for Haryana canal system has been calculated as 39%. This is low value indicating excess water is being extracted to meet the water demands.
文摘The most useful indicators should be established, designed and customized based on local issues of a target area. In order to establish groundwater sustainability indicators for the Vietnam capital, Hanoi, in this study, the sustainability assessment framework of groundwater resources from an economic perspective is proposed for the first time with the focus of Hanoi current groundwater problems. An AHP (Analytical Hierarchy Process) approach is employed to generate the main components (aspects and indicators) of this framework, because development of composite indicators is considered to be a best approach for sustainability evaluation. To do this, the current problems of Hanoi groundwater resources were carefully reviewed and explored to propose three main aspects (quantity, quality and management) and appropriately construct their 9 MESIs (Macroeconomic Sustainability Indicators). As for the results, the sustainability indices of the quantity, quality and management aspects were appropriately assessed as good, excellent and good sustainability levels, respectively. As a result, the sustainability of Hanoi groundwater resources development is economically good, indicating that there has been a big effort to improve the groundwater sustainability from both sides, the local government and communities.
文摘Degradation of the physical quality of the soil is a common problem encountered in agrosystems, particularly in the case of open field cropping systems in the northern areas of Côte d’Ivoire. Thus, the structural stability of the soil, which is a good indicator of the sensitivity to threshing and to water erosion in relation to the accumulation of organic matter, was evaluated in two types of soil (Ferralsol and Cambisol) in cashew orchards, in two villages (Mahana and Sanankoro) producing cashew nuts, located the Department of Touba in the North West of Côte d’Ivoire. The objective of this study is to develop new technical routes that are better suited to further promote the sequestration of organic carbon in the soil. Soil samples were taken from open soil profiles at the two chosen sites to allow laboratory analyzes. The results indicate that the surface horizon of Cambisol (site 1) is more stable (Is = 0.78) than that of Ferralsol (site 2;Is = 1.08) with nevertheless relatively small thicknesses of horizons. The median horizons and those of depth, indicate a mediocre stability (Is vary from 1.03 to 1.62). In terms of the quantity of organic carbon, the estimated values vary from 1.96 to 4.53 t⋅ha−1 for Cambisol (site 1) and from 1.44 to 3.46 t⋅ha−1 for Ferralsol (site 2). These values remain relatively low especially at the level of the median horizons and those located in depths. Statistical tests have shown a very highly significant and negative association between the structural stability of soils and the amount of organic carbon in the different horizons. The relationship implies that organic carbon plays an important role in the structural stability of soil horizons under cashew tree orchards.
基金the Major Science and Technology Project of Southwest Oil and Gas Field Company(2022ZD01-02).
文摘Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results.
基金support granted to carry out the research,and for the funding,Dr.Graciela Herrera Zamarron,responsible for the project with Contract number 0266-1O-ED-F-DGAT-UNAM-2-19-1928.
文摘To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.
基金financially supported by the Key project of National Natural Science Foundation of China (Grant No.32330096)Innovative Research Group Project of Hebei Natural Science Foundation (Grant No.C2024204246)+3 种基金S&T Program of Hebei (Grant Nos.21372901D23567601H)Natural Science Foundation of Hebei (Grant No.C2023204119)the Starting Grant from Hebei Agricultural University (Grant No.YJ201958)。
文摘Protoplast-based transient gene expression system has been widely used in plant genome editing because of its simple operation and less time-consuming.In order to establish a universal protoplast-based transient transfection system for verifying activities of genome editing vectors containing targets in Brassica,we systematically optimized factors affecting protoplast isolation and transient gene expression.We established an efficient protoplast-based transient gene expression system(PTGE)in Chinese cabbage,achieving high protoplast yield of 4.9×10^(5)·g^(-1)FW,viability over 95%,and transfection efficiency of 76%.We showed for the first time that pretreatment of protoplasts with a hypotonic MMG could significantly enhance the transfection efficiency.Furthermore,protoplasts incubated at 37℃ for 6 min improved the transfection efficiency to 86%.We also demonstrated that PTGE worked well(more than 50%transfection efficiency)in multiple Brassica species including cabbage,Pak Choi,Chinese kale,and turnip.Finally,PTGE was used for validating the activities of CRISPR/Cas9 vectors containing targets in Chinese cabbage,cabbage,and pak choi,demonstrating the broad applicability of the established PTGE for genome editing in Brassica crops.
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
基金supported by the Natural Science Foundation of Jiangsu Province (BK20220416)University Science Research Project of Jiangsu Province (22KJB550009)the National Key Research and Development Program of China (2023YFD2201300).
文摘Pre-formed V7-type short amylose(SA)could interact with curcumin to form inclusion complex(IC)thereby to improve the stability of curcumin.However,the complexation mechanism of V7-type SA and curcumin is not clear,which limit the improvement of inclusion efficiency.To obtain a starch nanocarrier with high loading capacity,the encapsulation process and interaction parameters of V7-type SA-curcumin IC was studied.The analysis results demonstrated that stoichiometric ratio value of the SA-curcumin complex was around 1.V7-type SA performed excellently in the delivery of curcumin attributing to their high loading capacity(over 20%).It was found that curcumin could enter into the pre-formed helical cavity of SA to form an IC.The conformation change of SA caused the reduction in the interaction ratio in the last 20 ns of simulation.However,SA and curcumin always remained complexation status during the simulation.Hydrogen bonds(H-bonds)and hydrophobic interaction were the most critical acting forces involved in the formation and stability of V7-type SA-curcumin complex.Molecular docking presented that H-bonds interaction between curcumin ligand and V7-type SA chain(O3 at the 25th glucose unit,and O6 at the 17th and 20th glucose units)were found.Furthermore,the hydrophobic interactions were discovered between curcumin ligand and SA chain(18th,19th,21st,22nd and 23rd glucose units).
基金Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China,Ministry of Natural Resources(No.2024NRMK03)National Natural Science Foundation of China(Nos.42271347,42371350).
文摘Wetland landscapes have undergone tremendous changes and the spatial heterogeneity of wetlands has increased.It’s a huge challenge to accurately assess the effect of human disturbance on the landscape patterns in such a complex environment.This paper,taking the Yellow River Delta as a case,proposed a new framework to evaluate the heterogeneity effect of human disturbances on landscape patterns.A pixel-based Human Disturbance Index(HDI)with the addition of ecological conditions and the buffer influence is first established to quantify the spatial difference of human disturbances.Besides,Geographically Weighted Regression(GWR)model was introduced to analyze the spatial correlation between HDI and landscape indices,i.e.,Shannon’s Diversity Index(SHDI),Contagion Index(CONTAG),and Area-Weighted Mean Shape Index(SHAPEAM),which strongly correlated with HDI.The results show that HDI in the Yellow River Delta has increased gradually and its spatial heterogeneity has continued to increase in the past 30 years.The increase of human disturbances mainly occurred in coastal areas due to H-level human disturbances in Dongying Port and M-H level human disturbances along the coast.But in most areas inland of study area,the HDI reduced slightly benefit from the wetland conservation measurements.The landscape pattern in the Yellow River Delta wetland has changed tremendously.The spatial heterogeneity of landscapes is enhanced,and the connectivity is reduced.Patches tend to be regularized.Different levels of human disturbance have different effects on the landscape patterns.The M-H level HDI leads to low landscape different and more connected.While the H level HDI leads to stronger landscape heterogeneity,complex patch shapes and decreased spatial connectivity.These implicate the proposed framework is efficient for evaluating the heterogeneity effect of human disturbance and landscape patterns in a complex wetland ecosystem.These methods and findings will provide suggestions and guidance for wetland conservation and management.
文摘The present study focuses on the analysis and description of lineaments interpreted as secondary structures to describe the nature of Senegalo Malian Discontinuity. These lineaments cross-cut the large north-south oriented transcurrent lithospheric structure known as the Senegalo Malian Discontinuity (SMD). Two lineaments were selected oriented NNE (N15˚ to N25˚), one at Dialafara and one at Sadiola. Four profiles on each lineament of these 2 zones, so that there were 2 on each side of the SMD. The ground data collected were processed using proper parameter and software. Some filters were applied to enhance the signal level. These ground data were later compared to the existing airborne magnetic data for consistency and accuracy using the upward continuation filter. The results show that the quality of ground data is good. In addition, the ground magnetic data show the presence of certain local anomalies that are not visible in the regional data. The analytical signal was also used to determine domain boundaries or possible contact zones. The contact zone can be highlighted on certain profiles such as L300 and L600. The study showed that the west and east sides of the SMD are not the same. Secondary structures become wide when approaching the SMD on both sides. They are also duplicated to the east of the SMD when we move progressively away. In the Dialafara area, the ground magnetic data intersect an interpreted fold. The results of this work confirm the presence of the secondary structures and their evolution in relation to the SMD. The relationships between the secondary structures in the Dailafara and Sadiola zones and their relations with the SMD are highlighted. The technique used in this study, is an important approach to better description and interpreting of regional structures using the secondary structures and proposing a structural model.
文摘1|INTRODUCTION The events of the coronavirus disease 2019 pandemic have emphasized the indispensable role of doctors in promoting public health and well-being[1].Although medicine and health care are being transformed by technological advances,such as artificial intelligence,big data,genomics,precision medicine,and telemedicine,doctors continue to play a critical role in providing health care.
文摘South Korea has experienced drought cycles every 5 to 7 years since 1970, with a severe drought lasting five years from 2013 to 2018. To prepare for these recurring drought risks, the South Korean government deliberated and approved a comprehensive drought response plan in August 2017. As part of this plan, research on a national-scale drought vulnerability assessment and the development of a drought vulnerability map was initiated to enhance proactive drought response measures. The objective of this study is to develop a methodology for assessing drought vulnerability, conduct a nationwide drought vulnerability evaluation, and visualize the results through a drought vulnerability map to assist in decision-making and information sharing. The drought vulnerability assessment was based on the water supply capacity of regional water systems under different scenarios, with exposure, sensitivity, and secondary water resource capacity quantified and weighted in the evaluation. As a result of conducting a drought vulnerability assessment on 250 municipalities nationwide, regions that rely primarily on river or groundwater source for water intake were found to be more vulnerable to drought than those supplied by dams. Furthermore, municipalities located along the east coast, where rivers tend to be steep and short, exhibited higher vulnerability to drought.
基金Fundamental Research Funds for Central Public Welfare Research Institutes,Grant/Award Number:CKSA2023479/NYNSFC-MWR-CTGC Joint Yangtze River Water Science Research Project,Grant/Award Number:U2040213+1 种基金Basic Scientific Research Business Funding Projects of Central Public Welfare Research Institutes,Grant/Award Numbers:CKSF2019251/NY,CKSF2021299/NYProjects of International Cooperation and Exchanges NSFC,Grant/Award Number:52211540722。
文摘SWAT model is one of the primary tools for assessing irrigation district water management and water-saving measures.However,its incapacity to consider the diverse growth and water requirements of paddy during various growth stages,as well as the insufficient availability of external water sources.This study introduces the Penman-Monteith equation and Jensen model into the SWAT framework,setting crop coefficients,crop base coefficients,and growth stage sensitivity indices based on the different growth stage.Additionally,modifications are made to the external water source available for irrigation and paddyfield leakage modules,establishing a distributed agricultural hydrological model suitable for accurately simulating water balance elements and paddy yield in multi-source irrigation districts.The Yangshudang watershed in the Zhanghe irrigation district is chosen for the evaluation of the modified model's simulation performance,with a quantitative assessment of water-saving and yield-increasing effects.The results demonstrate that the modified model effectively meets the requirements for simulating paddy evapotranspiration of various growth stages,yield,agricultural irrigation water consumptions,and runoff,exhibiting a notable enhancement in performance.As two common water-saving measures in irrigation areas,inter-mittent irrigation and irrigation district renovation were used as two water-saving scenarios in the simulation of the modified SWAT model.Under intermittent irrigation,the watershed experiences a 6.58%reduction in net irrigation water use.In the scenario with irrigation district renovation,the water resources in the watershed are utilized more efficiently.The modified model from this study can be applied for assessing the synergistic effects of irrigation district water-saving and yield-increasing measures,providing crucial insights for the formulation of irri-gation district water-saving strategies and water resource optimization plans.
文摘Purpose: Diet and eating habits are major risk factors for the health and the development of disease, such as, for example, metabolic disorder leading to cardiovascular pathology and cancer, decreased immunity exposing to infections. This study of the physico-chemical and nutritional properties of a soumara-based food broth was carried out with the aim of promoting the consumption of organic broth made from nere seeds (soumara). That is to alleviate certain metabolic diseases, which is a matter of food safety, and also to limit the risk for the health about the consumption of some cooking stocks on the market. Methods: Several natural ingredients such as nere seeds (soumara), ginger, black pepper, parsley and garlic were used to create a nere-based stock. All these ingredients were freeze-dried and the powder obtained was used to make the broth, regarding their physical and chemical properties. Results: The broth had a good protein content of 17.41 ± 0.367 g/100g, a lipid content of 16.80 ± 0.08 g/100g and a fiber content of 8.66 ± 0.04 g/100g. In terms of nutritional values, the broth showed good levels of calcium 184.21 ± 0.09 mg/100g, potassium 50.04 ± 1.45 mg/100g and iron and zinc. In terms of antioxidant activity, the broth also showed good antioxidant activity. Conclusion: Regarding the properties of our food broth, whose composition is based on natural ingredients, could be recommended for consumption and, its properties, could play an important role in preventing and combating certain metabolic diseases.