Deep underground provides enormous resources for mankind,such as energy,minerals,and water.It can also provide effective solutions for pollutant disposal,such as nuclear waste disposal and CO_(2) geosequestration,as w...Deep underground provides enormous resources for mankind,such as energy,minerals,and water.It can also provide effective solutions for pollutant disposal,such as nuclear waste disposal and CO_(2) geosequestration,as well as storage spaces.In addition,deep underground is of great necessity because it provides an ultra-quiet environment for scientific research facilities for advanced experiments in physics,chemistry,and medicine.展开更多
Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective...Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective article,two review articles,six research articles,and one case study article.These articles focus on underground energy storage,multiscale modeling for correlation between micro-scale damage and macro-scale structural degradation,mineralization and formation of gold mine,interface and fracture seepage,experimental study on tunnel-sand-pile interaction,and high water-content materials for deep underground space backfilling,analytical solutions for the crack evolution direction in brittle rocks,and a case study on the squeezing-induced failure in a water drainage tunnel and the rehabilitation measures.展开更多
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac...Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.展开更多
The recent advancements in thermoelectric materials are largely credited to two factors,namely established physical theories and advanced materials engineering methods.The developments in the physical theories have co...The recent advancements in thermoelectric materials are largely credited to two factors,namely established physical theories and advanced materials engineering methods.The developments in the physical theories have come a long way from the“phonon glass electron crystal”paradigm to the more recent band convergence and nanostructuring,which consequently results in drastic improvement in the thermoelectric figure of merit value.On the other hand,the progresses in materials fabrication methods and processing technologies have enabled the discovery of new physical mechanisms,hence further facilitating the emergence of high-performance thermoelectric materials.In recent years,many comprehensive review articles are focused on various aspects of thermoelectrics ranging from thermoelectric materials,physical mechanisms and materials process techniques in particular with emphasis on solid state reactions.While bottom-up approaches to obtain thermoelectric materials have widely been employed in thermoelectrics,comprehensive reviews on summarizing such methods are still rare.In this review,we will outline a variety of bottom-up strategies for preparing high-performance thermoelectric materials.In addition,state-of-art,challenges and future opportunities in this domain will be commented.展开更多
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere...Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions.展开更多
The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem.Recent reports have shown that hydrogel wound dressings might be an effective strategy for treating diabetic wounds ...The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem.Recent reports have shown that hydrogel wound dressings might be an effective strategy for treating diabetic wounds due to their excellent hydrophilicity,good drug-loading ability and sustained drug release properties.As a typical example,hyaluronic acid dressing(Healoderm)has been demonstrated in clinical trials to improve wound-healing efficiency and healing rates for diabetic foot ulcers.However,the drug release and degradation behavior of clinically-used hydrogel wound dressings cannot be adjusted according to the wound microenvironment.Due to the intricacy of diabetic wounds,antibiotics and other medications are frequently combined with hydrogel dressings in clinical practice,although these medications are easily hindered by the hostile environment.In this case,scientists have created responsive-hydrogel dressings based on the microenvironment features of diabetic wounds(such as high glucose and low pH)or combined with external stimuli(such as light or magnetic field)to achieve controllable drug release,gel degradation,and microenvironment improvements in order to overcome these clinical issues.These responsive-hydrogel dressings are anticipated to play a significant role in diabetic therapeutic wound dressings.Here,we review recent advances on responsive-hydrogel dressings towards diabetic wound healing,with focus on hydrogel structure design,the principle of responsiveness,and the behavior of degradation.Last but not least,the advantages and limitations of these responsive-hydrogels in clinical applications will also be discussed.We hope that this review will contribute to furthering progress on hydrogels as an improved dressing for diabetic wound healing and practical clinical application.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
In recent decades, significant changes of Arctic sea ice have taken place. These changes are expected to influence the surface energy balance of the ice-covered Arctic Ocean. To quantify this energy balance and to inc...In recent decades, significant changes of Arctic sea ice have taken place. These changes are expected to influence the surface energy balance of the ice-covered Arctic Ocean. To quantify this energy balance and to increase our understanding of mechanisms leading to observed changes in the Arctic sea ice, the project "Advancing Modelling and Observing solar Radiation of Arctic sea ice--understanding changes and processes (AMORA)" was initiated and conducted from 2009 to 2013. AMORA was funded and organized under a frame of Norway-China bilateral collaboration program with partners from Finland, Germany, and the USA. The primary goal of the project was achieved by developing an autonomous spectral radiation buoy, deploying it on drifting sea ice close to the North Pole, and receiving a high-resolution time series of spectral radiation over and under sea ice from spring (before melt onset) to autumn (after freeze-up) 2012. Beyond this, in-situ sea ice data were collected during several field campaigns and simulations of snow and sea ice thermodynamics were performed. More autonomous measurements are available through deployments of sea ice mass balance buoys. These new observational data along with numerical model studies are helping us to better understand the key thermodynamic processes of Arctic sea ice and changes in polar climate. A strong scientific, but also cultural exchange between Norway, China, and the partners from the USA and Europe initiated new collaborations in Arctic reseach.展开更多
Rechargeable Al batteries(RAB)are promising candidates for safe and environmentally sustainable battery systems with low-cost investments.However,the currently used aluminum chloridebased electrolytes present a signif...Rechargeable Al batteries(RAB)are promising candidates for safe and environmentally sustainable battery systems with low-cost investments.However,the currently used aluminum chloridebased electrolytes present a significant challenge to commercialization due to their corrosive nature.Here,we report for the first time,a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate(Al(OTf)_(3))with tetrabutylammonium chloride(TBAC)additive in diglyme.The presence of a mere 0.1 M of TBAC in the Al(OTf)_(3) electrolyte generates the charge carrying electrochemical species,which forms the basis of reaction at the electrodes.TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)_(3) to generate the solid electrolyte interphase components.Our electrolyte’s superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests,the longest cycling life reported to date.This unique combination of salt and additive is non-corrosive,exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations,which makes it commercially promising.Through this report,we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.展开更多
We highlight two articles in this issue:A research article titled“Excavation compensation theory and supplementary technology system for large deformation disasters”by Manchao He et al.and a review article titled“M...We highlight two articles in this issue:A research article titled“Excavation compensation theory and supplementary technology system for large deformation disasters”by Manchao He et al.and a review article titled“Mineralogy,microstructures and geomechanics of rock salt for underground gas storage”by Veerle Vandeginste et al.展开更多
Deep Underground Science and Engineering(DUSE)launched its first issue in September 2022 as a quarterly journal.So far,it has published 106 articles with nine issues and online early view.The volume of received manusc...Deep Underground Science and Engineering(DUSE)launched its first issue in September 2022 as a quarterly journal.So far,it has published 106 articles with nine issues and online early view.The volume of received manuscripts increases by 50%each year and over 200 manuscripts were received by 28th of November 2024.In the early period,DUSE authorship came from five countries and now reaches 29 countries.DUSE articles have been downloaded over 97000 times by readers from 170 countries/regions.It is indeed encouraging to note that DUSE has been admitted to different indices,including ESCI(August 2024),EI(March 2024),Scopus(July 2023),and DOAJ(May 2023).Its CiteScore in Scopus was 2.2 in 2023 and increased to 5.1 at the mid-November 2024.Its first impact factor from the Web of Science will be available in 2025.DUSE is growing to be a rapidly recognized international journal by readers in deep underground research and practice.展开更多
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the...Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.展开更多
The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES al...The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES allows for integrating two or more renewable energy resources,successfully addressing the issue of intermittent availability of non-conventional energy resources.Optimization is critical for improving the HRES’s performance parameters during implementation.This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies.However,energy fluctuations present a problem with the power quality of HRES.To address this issue,the research paper introduces the Generalized Dynamic Progressive Neural Fuzzy Controller(GDPNFC),which regulates power flow within the proposed HRES.Furthermore,a unique approach called Enhanced Multi-Objective Monarch Butterfly Optimization(EMMBO)is used to optimize technical parameters.The simulation tool used in the research work is HOMER(Hybrid Optimization of Multiple Energy Resources)-PRO,and the system’s power quality is assessed using MATLAB 2016.The research paper concludes with comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic Distortion(THD).It was established that the proposed technique involving EMMBO outperformed existing methods in technical optimization.展开更多
We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shif...We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio?ν_E/?ν_R and light shift|?_R-?_E|using nonlinear spectroscopy.Specifically,when?ν_E/?ν_R reaches a value of 1.57,the temperature and number of cold atoms achieve the optimal cooling effect.This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect,contributing to the future development of isotropic laser cooling for application in quantum sensing.展开更多
Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions...Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).展开更多
AuCu bimetallic nanoclusters exhibit enhanced emission relative to structurally analogous Au nanoclusters,though their excited-state dynamics remains incompletely characterized.Here,we chose AuCu_(14)as a system to pr...AuCu bimetallic nanoclusters exhibit enhanced emission relative to structurally analogous Au nanoclusters,though their excited-state dynamics remains incompletely characterized.Here,we chose AuCu_(14)as a system to probe the excited-state behaviors and triplet energy transfer dynamics of bimetallic nanoclusters.The O_(2)sensitivity of both photoluminescence quantum yield and excited-state lifetime confirms triplet-origin emission,while the minimal spectral changes at low temperature suggest weak electron-vibration coupling.Notably,although O_(2)induces significant photoluminescence quenching,the addition of triplet-state acceptors(perylene and anthracene)shows no quenching effect due to steric hindrance from surface ligands.These results advance the mechanistic understanding of triplet-state dynamics in AuCu bimetallic nanoclusters.展开更多
Deep Underground Science and Engineering(DUSE)is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies.This issue comprises 19 articles:six from ...Deep Underground Science and Engineering(DUSE)is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies.This issue comprises 19 articles:six from our special issue"Underground large-scale energy storage technologies in the context of carbon neutrality",11 from regular submissions on related topics,and two from early regular submissions.These contributions include five review articles,one perspective article,and 13 research articles.The increased volume of this issue and later issues reflects DUSE's commitment to addressing the rapid growth in submissions and the current backlog of high-quality papers.展开更多
Semiconductor colloidal quantum wells(CQWs)with atomic-precision layer thickness are rapidly gaining attention for next-generation optoelectronic applications due to their tunable optical and electronic properties.In ...Semiconductor colloidal quantum wells(CQWs)with atomic-precision layer thickness are rapidly gaining attention for next-generation optoelectronic applications due to their tunable optical and electronic properties.In this study,we investigate the dielectric and optical characteristics of CdSe CQWs with monolayer numbers ranging from 2 to 7,synthesized via thermal injection and atomic layer(c-ALD)deposition techniques.Through a combination of spectroscopic ellipsometry(SE)and first-principles calculations,we demonstrate the significant tunability of the bandgap,refractive index,and extinction coefficient,driven by quantum confinement effects.Our results show a decrease in bandgap from 3.1 to 2.0 eV as the layer thickness increases.Furthermore,by employing a detailed analysis of the absorption spectra,accounting for exciton localization and asymmetric broadening,we precisely capture the relationship between monolayer number and exciton binding energy.These findings offer crucial insights for optimizing CdSe CQWs in optoelectronic device design by leveraging their layer-dependent properties.展开更多
The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolid...The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolidone(PVP),cetyltrimethylammonium bromide(CTAB),trisodium citrate(TC),polyvinyl alcohol(PVA),and ethylene glycol(EG).These nanophosphors were synthesized via a facile hydrothermal-assisted solid-state reaction.X-ray diffraction(XRD)analysis confirmed the orthorhombic crystal structure of all the prepared samples.Morphological and size analyses were performed using scanning electron microscopy(SEM)and particle size distribution profiling.High-resolution transmission electron microscopy(HRTEM)complemented by elemental mapping was used to evaluate the particle dimensions and interplanar spacing of the optimized sample.Fourier-transform infrared spectroscopy(FTIR)was used to identify functional groups and assign corresponding vibrational bands.X-ray photoelectron spectroscopy(XPS)provided insights into the elemental composition and binding energies of the optimized nanophosphors.Notably,the PVA-modified sample doped with 14mol%Eu3+exhibited pronounced red emission at 616 nm,attributed to the ^(5)D_(0)→^(7)F_(2) electric dipole transition of Eu3+ions under ultraviolet(UV)excitation.Detailed excitation and emission spectral analyses were performed,with band assignments corresponding to the relevant electronic transitions.Among the surface-treated variants,the PVA-modified nanophosphors demonstrated exceptional color purity of 99.6%,international commission on illumination(CIE)chromaticity coordinates of(0.6351,0.3644),and a correlated color temperature of 1147 K.These superior optical features are ascribed to the enhanced surface passivation and suppression of nonradiative recombination,facilitated effectively by the PVA surface layer.Lifetime decay analysis across all samples revealed a significantly extended lifetime for the optimized composition,further supporting its superior luminescence efficiency.In addition,evaluation of the biocompatibility of the nano-phosphors highlighted their potential for biomedical applications.Overall,these findings emphasize the efficacy of PVA-modified Eu^(3+)-doped lanthanum tungstate nanophosphors as highly efficient red emitters,suitable for application in white light-emitting diodes(WLEDs)and latent fingerprint detection while offering valuable insights into the role of surface modification in tuning the optical properties of nanophosphors.展开更多
The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic framework...The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.展开更多
文摘Deep underground provides enormous resources for mankind,such as energy,minerals,and water.It can also provide effective solutions for pollutant disposal,such as nuclear waste disposal and CO_(2) geosequestration,as well as storage spaces.In addition,deep underground is of great necessity because it provides an ultra-quiet environment for scientific research facilities for advanced experiments in physics,chemistry,and medicine.
文摘Deep Underground Science and Engineering(DUSE)is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground.This issue contains one perspective article,two review articles,six research articles,and one case study article.These articles focus on underground energy storage,multiscale modeling for correlation between micro-scale damage and macro-scale structural degradation,mineralization and formation of gold mine,interface and fracture seepage,experimental study on tunnel-sand-pile interaction,and high water-content materials for deep underground space backfilling,analytical solutions for the crack evolution direction in brittle rocks,and a case study on the squeezing-induced failure in a water drainage tunnel and the rehabilitation measures.
基金funded by the National Natural Science Foundation of China(Grant Nos.62322410,52272168,624B2135,61804047)the Fundamental Research Funds for the Central Universities(No.WK2030000103)。
文摘Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.
基金The authors acknowledge support from A*STAR’s Science and Engineering Research Council,PHAROS program on Hybrid Thermoelectrics for Ambient Applications(Grant Nos.:1527200019,1527200020 and 1527200021)Agritech program on Sustainable Hybrid Lighting System for Controlled Environment Agriculture:A19D9a0096.
文摘The recent advancements in thermoelectric materials are largely credited to two factors,namely established physical theories and advanced materials engineering methods.The developments in the physical theories have come a long way from the“phonon glass electron crystal”paradigm to the more recent band convergence and nanostructuring,which consequently results in drastic improvement in the thermoelectric figure of merit value.On the other hand,the progresses in materials fabrication methods and processing technologies have enabled the discovery of new physical mechanisms,hence further facilitating the emergence of high-performance thermoelectric materials.In recent years,many comprehensive review articles are focused on various aspects of thermoelectrics ranging from thermoelectric materials,physical mechanisms and materials process techniques in particular with emphasis on solid state reactions.While bottom-up approaches to obtain thermoelectric materials have widely been employed in thermoelectrics,comprehensive reviews on summarizing such methods are still rare.In this review,we will outline a variety of bottom-up strategies for preparing high-performance thermoelectric materials.In addition,state-of-art,challenges and future opportunities in this domain will be commented.
基金support from the Natural Science Foundation of Liaoning Province(general program)(2020-MS-137)T.J.White would like to thank the MOE2019-T2-2-032 grant and Monetary Academic Resources for Research Grant 001561-00001 in Nanyang Technological University,Singapore+9 种基金T.Ma would like to thank the National Natural Science Foundation of China(Nos.52071171,52202248)Liaoning BaiQianWan Talents Program(LNBQW2018B0048)Shenyang Science and Technology Project(21-108-9-04)Australian Research Council(ARC)through Future Fellowship(FT210100298,FT210100806)Discovery Project(DP220100603)Linkage Project(LP210100467,LP210200504,LP210200345,LP220100088)Industrial Transformation Training Centre(IC180100005)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)F.Wei would like to thank the A^(*)STAR career development fund C210112054Singapore structural metal alloy program grant No.A18b1B0061.A.K.Cheetham would like to thank the Ras al Khaimah Centre for Advanced Materials.
文摘Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions.
基金This work was supported by the National Key Research and Development Program of China(2020YFA0908100)the National Natural Science Foundation of China(81972081,81971724,81773661,51973226 and 82173750)+2 种基金the Youth Innovation Promotion Association CAS(2019031)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2020R01018,2021B42001 and 2022C02037)the A*STAR Research Grant for Support of This Project.
文摘The treatment of chronic and non-healing wounds in diabetic patients remains a major medical problem.Recent reports have shown that hydrogel wound dressings might be an effective strategy for treating diabetic wounds due to their excellent hydrophilicity,good drug-loading ability and sustained drug release properties.As a typical example,hyaluronic acid dressing(Healoderm)has been demonstrated in clinical trials to improve wound-healing efficiency and healing rates for diabetic foot ulcers.However,the drug release and degradation behavior of clinically-used hydrogel wound dressings cannot be adjusted according to the wound microenvironment.Due to the intricacy of diabetic wounds,antibiotics and other medications are frequently combined with hydrogel dressings in clinical practice,although these medications are easily hindered by the hostile environment.In this case,scientists have created responsive-hydrogel dressings based on the microenvironment features of diabetic wounds(such as high glucose and low pH)or combined with external stimuli(such as light or magnetic field)to achieve controllable drug release,gel degradation,and microenvironment improvements in order to overcome these clinical issues.These responsive-hydrogel dressings are anticipated to play a significant role in diabetic therapeutic wound dressings.Here,we review recent advances on responsive-hydrogel dressings towards diabetic wound healing,with focus on hydrogel structure design,the principle of responsiveness,and the behavior of degradation.Last but not least,the advantages and limitations of these responsive-hydrogels in clinical applications will also be discussed.We hope that this review will contribute to furthering progress on hydrogels as an improved dressing for diabetic wound healing and practical clinical application.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金supported by the Research Council of Norway through AMORA (grant 193592)the Norwegian Polar Institute (NPI) and its Center for Ice, Climate and Ecosystems (ICE)support came from all partner institutes:Alfred-Wegener-Institut Helmholtz-Zentrum für Polarund Meeresforschung,Polar Research Institute of China,Dalian University of Technology(Grant no.NSFC41376186),Finnish Meteorological Institute, and the Cold Regions Research and Engineering Laboratory
文摘In recent decades, significant changes of Arctic sea ice have taken place. These changes are expected to influence the surface energy balance of the ice-covered Arctic Ocean. To quantify this energy balance and to increase our understanding of mechanisms leading to observed changes in the Arctic sea ice, the project "Advancing Modelling and Observing solar Radiation of Arctic sea ice--understanding changes and processes (AMORA)" was initiated and conducted from 2009 to 2013. AMORA was funded and organized under a frame of Norway-China bilateral collaboration program with partners from Finland, Germany, and the USA. The primary goal of the project was achieved by developing an autonomous spectral radiation buoy, deploying it on drifting sea ice close to the North Pole, and receiving a high-resolution time series of spectral radiation over and under sea ice from spring (before melt onset) to autumn (after freeze-up) 2012. Beyond this, in-situ sea ice data were collected during several field campaigns and simulations of snow and sea ice thermodynamics were performed. More autonomous measurements are available through deployments of sea ice mass balance buoys. These new observational data along with numerical model studies are helping us to better understand the key thermodynamic processes of Arctic sea ice and changes in polar climate. A strong scientific, but also cultural exchange between Norway, China, and the partners from the USA and Europe initiated new collaborations in Arctic reseach.
基金the financial support from Agency for Science, Technology and Research (Central Research Fund Award)
文摘Rechargeable Al batteries(RAB)are promising candidates for safe and environmentally sustainable battery systems with low-cost investments.However,the currently used aluminum chloridebased electrolytes present a significant challenge to commercialization due to their corrosive nature.Here,we report for the first time,a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate(Al(OTf)_(3))with tetrabutylammonium chloride(TBAC)additive in diglyme.The presence of a mere 0.1 M of TBAC in the Al(OTf)_(3) electrolyte generates the charge carrying electrochemical species,which forms the basis of reaction at the electrodes.TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)_(3) to generate the solid electrolyte interphase components.Our electrolyte’s superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests,the longest cycling life reported to date.This unique combination of salt and additive is non-corrosive,exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations,which makes it commercially promising.Through this report,we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.
文摘We highlight two articles in this issue:A research article titled“Excavation compensation theory and supplementary technology system for large deformation disasters”by Manchao He et al.and a review article titled“Mineralogy,microstructures and geomechanics of rock salt for underground gas storage”by Veerle Vandeginste et al.
文摘Deep Underground Science and Engineering(DUSE)launched its first issue in September 2022 as a quarterly journal.So far,it has published 106 articles with nine issues and online early view.The volume of received manuscripts increases by 50%each year and over 200 manuscripts were received by 28th of November 2024.In the early period,DUSE authorship came from five countries and now reaches 29 countries.DUSE articles have been downloaded over 97000 times by readers from 170 countries/regions.It is indeed encouraging to note that DUSE has been admitted to different indices,including ESCI(August 2024),EI(March 2024),Scopus(July 2023),and DOAJ(May 2023).Its CiteScore in Scopus was 2.2 in 2023 and increased to 5.1 at the mid-November 2024.Its first impact factor from the Web of Science will be available in 2025.DUSE is growing to be a rapidly recognized international journal by readers in deep underground research and practice.
基金the financial support from the Fujian Science Foundation for Outstanding Youth(2023J06039)the National Natural Science Foundation of China(Grant No.41977259,U2005205,41972268)the Independent Research Project of Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China(KY-090000-04-2022-019)。
文摘Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.
文摘The globe faces an urgent need to close the energy demand-supply gap.Addressing this difficulty requires constructing a Hybrid Renewable Energy System(HRES),which has proven to be the most appropriate solution.HRES allows for integrating two or more renewable energy resources,successfully addressing the issue of intermittent availability of non-conventional energy resources.Optimization is critical for improving the HRES’s performance parameters during implementation.This study focuses on HRES using solar and biomass as renewable energy supplies and appropriate energy storage technologies.However,energy fluctuations present a problem with the power quality of HRES.To address this issue,the research paper introduces the Generalized Dynamic Progressive Neural Fuzzy Controller(GDPNFC),which regulates power flow within the proposed HRES.Furthermore,a unique approach called Enhanced Multi-Objective Monarch Butterfly Optimization(EMMBO)is used to optimize technical parameters.The simulation tool used in the research work is HOMER(Hybrid Optimization of Multiple Energy Resources)-PRO,and the system’s power quality is assessed using MATLAB 2016.The research paper concludes with comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic Distortion(THD).It was established that the proposed technique involving EMMBO outperformed existing methods in technical optimization.
基金Project supported by Shandong Provincial Natural Science Foundation(Grant No.ZR2023LLZ003)the National Natural Science Foundation of China(Grant No.62005145)Fundamental Research Fund of Shandong University,and Shandong Provincial Postdoctoral Science Foundation(Grant No.SDBX202302002)。
文摘We demonstrate an integrating sphere to cool~(87)Rb atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum.We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio?ν_E/?ν_R and light shift|?_R-?_E|using nonlinear spectroscopy.Specifically,when?ν_E/?ν_R reaches a value of 1.57,the temperature and number of cold atoms achieve the optimal cooling effect.This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect,contributing to the future development of isotropic laser cooling for application in quantum sensing.
基金National Research Foundation (NRF Investigatorship NRF-NRFI09-0002)Agency for Science,Technology and Research (MTC Programmatic Fund M23L9b0052)。
文摘Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).
基金supported by the National Natural Science Foundation of China(No.22273095).
文摘AuCu bimetallic nanoclusters exhibit enhanced emission relative to structurally analogous Au nanoclusters,though their excited-state dynamics remains incompletely characterized.Here,we chose AuCu_(14)as a system to probe the excited-state behaviors and triplet energy transfer dynamics of bimetallic nanoclusters.The O_(2)sensitivity of both photoluminescence quantum yield and excited-state lifetime confirms triplet-origin emission,while the minimal spectral changes at low temperature suggest weak electron-vibration coupling.Notably,although O_(2)induces significant photoluminescence quenching,the addition of triplet-state acceptors(perylene and anthracene)shows no quenching effect due to steric hindrance from surface ligands.These results advance the mechanistic understanding of triplet-state dynamics in AuCu bimetallic nanoclusters.
文摘Deep Underground Science and Engineering(DUSE)is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies.This issue comprises 19 articles:six from our special issue"Underground large-scale energy storage technologies in the context of carbon neutrality",11 from regular submissions on related topics,and two from early regular submissions.These contributions include five review articles,one perspective article,and 13 research articles.The increased volume of this issue and later issues reflects DUSE's commitment to addressing the rapid growth in submissions and the current backlog of high-quality papers.
基金supported by the National Natural Science Foundation of China(62205180)the Natural Science Foundation of Shandong Province(ZR2022QF029)the Taishan Scholar Program of Shandong Province(Young Scientist).
文摘Semiconductor colloidal quantum wells(CQWs)with atomic-precision layer thickness are rapidly gaining attention for next-generation optoelectronic applications due to their tunable optical and electronic properties.In this study,we investigate the dielectric and optical characteristics of CdSe CQWs with monolayer numbers ranging from 2 to 7,synthesized via thermal injection and atomic layer(c-ALD)deposition techniques.Through a combination of spectroscopic ellipsometry(SE)and first-principles calculations,we demonstrate the significant tunability of the bandgap,refractive index,and extinction coefficient,driven by quantum confinement effects.Our results show a decrease in bandgap from 3.1 to 2.0 eV as the layer thickness increases.Furthermore,by employing a detailed analysis of the absorption spectra,accounting for exciton localization and asymmetric broadening,we precisely capture the relationship between monolayer number and exciton binding energy.These findings offer crucial insights for optimizing CdSe CQWs in optoelectronic device design by leveraging their layer-dependent properties.
基金financial support provided by the National Research Foundation of Korea(NRF)through the Basic Science Research Program,funded by the Ministry of Education(Nos.2021R1A6A1A03039493 and 2022R1A2C1009389)the authors extend their appreciation to the Researchers Supporting Project(No.RSPD2025R956)。
文摘The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolidone(PVP),cetyltrimethylammonium bromide(CTAB),trisodium citrate(TC),polyvinyl alcohol(PVA),and ethylene glycol(EG).These nanophosphors were synthesized via a facile hydrothermal-assisted solid-state reaction.X-ray diffraction(XRD)analysis confirmed the orthorhombic crystal structure of all the prepared samples.Morphological and size analyses were performed using scanning electron microscopy(SEM)and particle size distribution profiling.High-resolution transmission electron microscopy(HRTEM)complemented by elemental mapping was used to evaluate the particle dimensions and interplanar spacing of the optimized sample.Fourier-transform infrared spectroscopy(FTIR)was used to identify functional groups and assign corresponding vibrational bands.X-ray photoelectron spectroscopy(XPS)provided insights into the elemental composition and binding energies of the optimized nanophosphors.Notably,the PVA-modified sample doped with 14mol%Eu3+exhibited pronounced red emission at 616 nm,attributed to the ^(5)D_(0)→^(7)F_(2) electric dipole transition of Eu3+ions under ultraviolet(UV)excitation.Detailed excitation and emission spectral analyses were performed,with band assignments corresponding to the relevant electronic transitions.Among the surface-treated variants,the PVA-modified nanophosphors demonstrated exceptional color purity of 99.6%,international commission on illumination(CIE)chromaticity coordinates of(0.6351,0.3644),and a correlated color temperature of 1147 K.These superior optical features are ascribed to the enhanced surface passivation and suppression of nonradiative recombination,facilitated effectively by the PVA surface layer.Lifetime decay analysis across all samples revealed a significantly extended lifetime for the optimized composition,further supporting its superior luminescence efficiency.In addition,evaluation of the biocompatibility of the nano-phosphors highlighted their potential for biomedical applications.Overall,these findings emphasize the efficacy of PVA-modified Eu^(3+)-doped lanthanum tungstate nanophosphors as highly efficient red emitters,suitable for application in white light-emitting diodes(WLEDs)and latent fingerprint detection while offering valuable insights into the role of surface modification in tuning the optical properties of nanophosphors.
基金supported by the National Natural Science Foundation of China(Nos.52374302 and 51874099)the Natural Science Foundation of Fujian Province’s Key Project(No.2021J02031)+1 种基金support from the open fund from Academy of Carbon Neutrality of Fujian Normal University(No.TZH_(2)022-06)We also thank the Undergraduate Training Programs for Innovation and Entrepreneurship(No.cxx1-2024363)。
文摘The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.