In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more ob...In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more obvious. Piezoelectric energy collector has attracted wide attention because of its simple structure, no heating, no electromagnetic interference, environmental protection and easy miniaturization. Wind energy is a reproducible resource. Wind energy harvester based on piezoelectric intelligent material can be named piezoelectric wind energy harvesting which converts wind energy into electric power and will have great application prospect. To promote the development of piezoelectric wind energy harvesting technology, research statuses on piezoelectric wind energy harvesting technology are reviewed. The existing problem and development direction about piezoelectric wind energy harvester in the future are discussed. The study will be helpful for researchers engaged in piezoelectric wind energy harvesting.展开更多
Cordyceps is treasured entomopathogenic fungi that have been used as antitumor,immunomodulating,antioxidant,and pro-sexual agent.Cordyceps,also called DongChongXiaCao in Chinese,Yartsa Gunbu(Tibetan),means winter worm...Cordyceps is treasured entomopathogenic fungi that have been used as antitumor,immunomodulating,antioxidant,and pro-sexual agent.Cordyceps,also called DongChongXiaCao in Chinese,Yartsa Gunbu(Tibetan),means winter worm-summer grass.Natural Cordyceps sinensis with parasitic hosts is difficult to be collected and the recent findings on its potential pharmacological functions,resulted in skyrocketing prices.Therefore,finding a mass-production method or an alternative for C.sinensis products is a top-priority task.In this review,we describe current status of Cordyceps research and its recent developments in Taiwan.The content and pharmacological activities of four major industrial species of Cordyceps(C.sinensis,Cordyceps militaris,Cordyceps cicadae and Cordyceps sobolifera)used in Taiwan,were reviewed.Moreover,we highlighted the effect of using different methods of fermentation and production on the morphology and chemical content of Cordyceps sp.Finally,we summarized the bottle-necks and challenges facing Cordyceps research as well as we proposed future road map for Cordyceps industry in Taiwan.展开更多
Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a...Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.展开更多
Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
In Nilaparvata lugens,a serious and widespread rice pest,high fecundity is one of the important reasons for large populations and outbreaks.As embryogenesis is a critical process associated with insect fecundity,this ...In Nilaparvata lugens,a serious and widespread rice pest,high fecundity is one of the important reasons for large populations and outbreaks.As embryogenesis is a critical process associated with insect fecundity,this study investigated the function of the Mucin2-like gene(NlMuc2)in the embryogenesis of N.lugens.The results showed that NlMuc2 was highly expressed in female reproductive organs and in 1-day-old eggs.Knockdown of NlMuc2 via RNA interference(RNAi)in 3rd instar nymphs resulted in increased mortality.In 5th instar nymphs,NlMuc2 knockdown led to a dramatic reduction in egg hatchability from 86.0%to 24.0%,offspring numbers from 330.4 to 81.5,egg count from 382.4 to 217.0,and resulted in 86.0%of eggs exhibiting inverted embryos.In newly emerged females,NlMuc2 knockdown retarded ovarian development and decreased the number of mature eggs,with 51.0%of eggs containing inverted embryos.Transcriptome sequencing analysis of eggs revealed that numerous genes were downregulated after NlMuc2 knockdown,with 16 and 15 downregulated genes enriched in the Wnt and MAPK pathways,respectively.Temporal and spatial expression profiling of selected differentially expressed genes,including Axin,δ-Catenin,Glypican-4-like,and Ror-like in the Wnt pathway,and MKK4 in the MAPK pathway,showed expression patterns similar to NlMuc2.Knockdown of Ror-like,Glypican-4-like,or MKK4 reduced the total number of eggs.Knockdown of Axin or MKK4 reduced the egg hatchability.A similar phenotype of eggs with inverted embryos was also observed in eggs laid by dsMKK4-and dsAxin-treated females.Thus,NlMuc2 is involved in embryonic development mainly by regulating the Wnt and MAPK signaling pathways.These findings may provide new targets for pesticide design and RNAi-based control of N.lugens,and will also provide new insights into insect embryonic development and the function of insect mucins.展开更多
To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hy...To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hypersonic transition research vehicle(HyTRV).The configuration of HyTRV is fully analytical,and details of the design process are discussed in this study.The transition characteristics for HyTRV are investigated using three combined methods,i.e.,theoretical analyses,numerical simulations,and wind tunnel experiments.Results show that the fully analytic parameterization design of HyTRV can satisfy the model simplification requirements from both numerical simulations and wind tunnel experiments.Meanwhile,the flow field of HyTRV reveals typical transition mechanisms in six relatively separated regions,including the streamwise vortex instability,crossflow instability,secondary instability,and attachment-line instability.Therefore,the proposed HyTRV model is valuable for fundamental researches in hypersonic boundary layer transition.展开更多
Numerical simulation of wing stall of a blended flying wing configuration at transonic speed was conducted using both delayed detached eddy simulation(DDES) and unsteady Reynolds-averaged Navier-Stokes(URANS) equa...Numerical simulation of wing stall of a blended flying wing configuration at transonic speed was conducted using both delayed detached eddy simulation(DDES) and unsteady Reynolds-averaged Navier-Stokes(URANS) equations methods based on the shear stress transport(SST) turbulence model for a free-stream Mach number 0.9 and a Reynolds number 9.6 × 10. A joint time step/grid density study is performed based on power spectrum density(PSD) analysis of the frequency content of forces or moments, and medium mesh and the normalized time scale0.010 were suggested for this simulation. The simulation results show that the DDES methods perform more precisely than the URANS method and the aerodynamic coefficient results from DDES method compare very well with the experiment data. The angle of attack of nonlinear vortex lift and abrupt wing stall of DDES results compare well with the experimental data. The flow structure of the DDES computation shows that the wing stall is caused mainly by the leeward vortex breakdown which occurred at x/x= 0.6 at angle of attack of 14°. The DDES methods show advantage in the simulation problem with separation flow. The computed result shows that a shock/vortex interaction is responsible for the wing stall caused by the vortex breakdown. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Wing body thickness has a great influence on shock and shock/vortex interactions, which can make a significant difference to the vortex breakdown behavior and stall characteristic of the blended flying wing configuration.展开更多
Rice with low glutelin content is suitable as functional food for patients affected by kidney failure. Low glutelincontent gene Lgc1 in rice has a 3.5-kb deletion between two highly similar glutelin genes GluB4 and Gl...Rice with low glutelin content is suitable as functional food for patients affected by kidney failure. Low glutelincontent gene Lgc1 in rice has a 3.5-kb deletion between two highly similar glutelin genes GluB4 and GluB5, which locates on the short arm of chromosome 2. To improve the selection efficiency in low glutelin-content rice breeding, two molecular markers designated as InDel-Lgc1-1 and InDel-Lgc1-2 were developed to detect the low glutelin-content gene Lgc1. A double PCR detection indicated that combined use of the two markers could easily distinguish the genotypes of Lgc1 from different rice varieties. Therefore, as a simple and low-cost technique, the molecular marker could be widely used to identify different varieties with Lgc1 gene and applied in marker-assisted selection of low glutelin-content rice.展开更多
Seawater desalination has been peoples fond dream since ancient times, the dream is now becoming a reality. This paper presents a brief development history of reverse osmosis. Much attention was paid to innovative dev...Seawater desalination has been peoples fond dream since ancient times, the dream is now becoming a reality. This paper presents a brief development history of reverse osmosis. Much attention was paid to innovative development in membranes, modules, equipments and applied technology, including asymmetric and composite membranes, spiral-wound element and hollow fiber module, energy recovery equipments and different technological processes. The extension of reverse osmosis, such as desalination, pre-concentration, integrated processes and nanofiltration, is also briefly mentioned.展开更多
Flow control using surface Dielectric Barrier Discharge(DBD)plasma actuators driven by a sinusoidal alternating-current power supply has gained significant attention from the aeronautic industry.The induced flow field...Flow control using surface Dielectric Barrier Discharge(DBD)plasma actuators driven by a sinusoidal alternating-current power supply has gained significant attention from the aeronautic industry.The induced flow field of the plasma actuator,with the starting vortex in the wall jet,plays an important role in flow control.However,the energy consumed for producing the induced flow field is only a small fraction of the total energy utilized by the plasma actuator,and most of the total energy is used in gas heating and dielectric heating.Therefore,an in-depth analysis of the thermal characteristics of the plasma actuator is the key to develop its potential capability further.In addition,compared with the investigation on the aerodynamic characteristics of the plasma actuator,there is a relative lack of detail in the study of its thermal characteristics.Understanding the thermal characteristics of the plasma actuator is of great interest for providing a deeper insight into the underlying working principles,advancing its numerical simulation model,prolonging its life,and achieving several potential engineering applications,such as antiicing and deicing.The present paper reviews the thermal characteristics of the plasma actuator,summarizes the influence of the dielectric film and actuation parameters on heating,and discusses the formation and transfer mechanism of the induced heating based on the discharge regimes of the plasma actuator in one cycle.展开更多
The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant...The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant.Recent developments,based on enriching protein in cassava chips,have yielded yeast fermented cassava chip protein(YEFECAP) providing up to 47.5% crude protein(CP),which can be used to replace soybean meal.The use of fodder trees has been developed through the process of pelleting;Leucaena leucocephala leaf pellets(LLP),mulberry leaf pellets(MUP) and mangosteen peel and/or garlic pellets,can be used as good sources of protein to supplement ruminant feeding.Apart from producing volatile fatty acids and microbial proteins,greenhouse gases such as methane are also produced in the rumen.Several methods have been used to reduce rumen methane.However,among many approaches,nutritional manipulation using feed formulation and feeding management,especially the use of plant extracts or plants containing secondary compounds(condensed tannins and saponins) and plant oils,has been reported.This approach could help todecrease rumen protozoa and methanogens and thus mitigate the production of methane.At present,more research concerning this burning issue-the role of livestock in global warming-warrants undertaking further research with regard to economic viability and practical feasibility.展开更多
The impact of unstable supercooled water droplets suspended in the cloud on the solid will cause its surface to freeze,and the flight safety of the aircraft will be seriously affected when flying in this environment.A...The impact of unstable supercooled water droplets suspended in the cloud on the solid will cause its surface to freeze,and the flight safety of the aircraft will be seriously affected when flying in this environment.Aircraft icing protection system is an important device to reduce icing accidents and improve aircraft safety performance,which is of great significance to ensure flight safety.Based on the energy source,this paper proposes a general strategy for constructing an aircraft icing protection system,including Active Anti-icing and De-icing(AAD)system,Passive Antiicing and De-icing(PAD)system and Composite Anti-icing and De-icing(CAD)system.The principle,scope of application,advantages and disadvantages of aircraft anti-icing and de-icing technologies such as electric pulse de-icing,low-frequency piezoelectric de-icing,and hydrophobic material anti-icing are explored in detail,and the corresponding improvement measures are proposed.The future development of aircraft anti-icing and de-icing technology is prospected,and some new ideas are provided for the improvement of aircraft anti-icing and de-icing technology.展开更多
Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o...Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.展开更多
The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overal...The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/d B and 2.5°/d B, respectively, which are 20.1°/d B and 1.6°/d B lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 d Bc lower than that of the original tube.展开更多
Hexafluorobutadiene is a new plasma etching gas for semiconductor molectron which has perfect properties and also is a preceding monomer that can be used for synthesizing many fluorinated compounds. This paper describ...Hexafluorobutadiene is a new plasma etching gas for semiconductor molectron which has perfect properties and also is a preceding monomer that can be used for synthesizing many fluorinated compounds. This paper described the different synthesis methods of perflurobutadiene from different materials, and contrasted the characteristic of each synthetic method. The route from tetrafluoroethylene has more industrialization prospects.展开更多
A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced...A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.展开更多
Reverse transcription quantitative PCR (RT-qPCR) is a highly sensitive technique that has become the standard for the analysis of differences in gene expression in response to experimental treatments or among genetic ...Reverse transcription quantitative PCR (RT-qPCR) is a highly sensitive technique that has become the standard for the analysis of differences in gene expression in response to experimental treatments or among genetic sources. The accuracy of the RT-qPCR results can be significantly affected by uncontrolled sources of variation that can be accounted for normalization with so-called reference genes stably expressed under various conditions. In this study we assessed the stability of 21 reference gene candidates in crowns of two alfalfa cultivars (Apica and Evolution) exposed to various environmental conditions (cold, water stress and photoperiod) and from above ground biomass of the cultivar Orca sampled at three developmental stages (vegetative, full bloom and mature pods). Candidates were selected based on their previous identification in other plant species or their stable expression in a differential hybridization of alfalfa ESTs with cDNA from non-acclimated and cold-acclimated alfalfa. Genes encoding ubiquitin protein ligase 2a (UBL-2a), actin depolymerizing factor (ADF) and retention in endoplasmic reticulum 1 protein (Rer1) were the most stable across experimental conditions. Conversely β-actin (Act), α-tubulin (Tub) and glyce-raldehyde 3-phosphate dehydrogenase (GAPDH) frequently used as “housekeeping genes” in gene expression studies showed poor stability. No more than two reference genes were required to normalize the gene expression data under each condition. Normalization of the expression of genes of interest with unstable reference genes led to observations that were conflicting with those made with validated reference genes and that were in some cases inconsistent with the current knowledge of the trait. The reference genes identified in this study are strong candidates for normalization of gene expression in cultivated alfalfa.展开更多
Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture. Cell division and elongation form the internode of soybean and result in different...Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture. Cell division and elongation form the internode of soybean and result in different plant heights and lodging resistance. Yet the mechanisms behind are unclear in soybean. To elucidate the mechanism of the concentration difference of auxin related to stem development in soybean, samples of apical shoot, elongation zone, and mature zone from the developing stems of soybean seedlings, Charleston, were harvested and measured for auxin concentration distributions and metabolites to identify the common underlying mechanisms responsible for concentration difference of auxin. Distribution of indole-3-acetic acid(IAA), indole-3-butyric acid(IBA), and methylindole-3-acetic acid(Me-IAA) were determined and auxin concentration distributions were found to have a complex regulation mechanism. The concentrations of IAA and Me-IAA in apical shoot were significantly different between elongation zone and mature zone resulting in an IAA gradient. Tryptophan dependent pathway from tryptamine directly to IAA or through indole-3-acetonitrile to IAA and from indole-3-propionic acid(IPA) to IAA were three primary IAA synthesis pathways. Moreover, some plant metabolites from flavonoid and phenylpropanoid synthesis pathways showed similar or reverse gradient and should involve in auxin homeostasis and concentration difference. All the data give the first insight in the concentration difference and homeostasis of auxin in soybean seedlings and facilitate a deeper understanding of the molecular mechanism of stem development and growth. The gathered information also helps to elucidate how plant height is formed in soybean and what strategy should be adopted to regulate the lodging resistance in soybean.展开更多
In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the stu...In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the study of S809 low-speed and high-angle airfoil flow.The method is based on the ensemble transform Kalman filter(ETKF)algorithm,which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity constants,increasing the constant disturbance dimensions and designing a fine disturbance interval.The results show that the pressure distribution on the airfoil surface after assimilation is closer to the experimental value than that of the standard Spalart-Allmaras(S-A)model.The separated vortex estimated by filtering is fuller,and the eddy viscosity field information is more abundant,which is physically consistent with the observation information.Therefore,the data assimilation method based on the improved ensemble strategy can more accurately and effectively describe complex turbulence phenomena.展开更多
An experimental investigation on ignition characteristics with air-throttling in an ethylene-fueled scramjet under flight Ma 6.5 conditions was conducted.The dynamic process of air-throttling ignition was explored sys...An experimental investigation on ignition characteristics with air-throttling in an ethylene-fueled scramjet under flight Ma 6.5 conditions was conducted.The dynamic process of air-throttling ignition was explored systematically.The influences of throttling parameters,i.e.,throttling mass rate and duration,were investigated.When the throttling mass rate was 45% of the inflow mass rate,ambient ethylene could be ignited reliably.The delay time from ignition to throttling was about 45–55 ms.There was a threshold of throttling duration under a certain throttling mass rate.It was shorter than 100 ms when the throttling mass rate was 45%.While a 45%throttling mass rate would make the shock train propagate upstream to the isolator entry in about10–15 ms,four lower throttling mass rates were tested,including 30%,25%,20%,and 10%.All of these throttling mass rates could ignite ethylene.However,combustion performances varied with them.A higher throttling mass rate made more ethylene combust and produced higher wall pressure.Through these experiments,some aspects of the relationships between ignition,flame stabilization,combustion efficiency,and air-throttling parameters were brought to light.These results could also be a benchmark for CFD validation.展开更多
文摘In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more obvious. Piezoelectric energy collector has attracted wide attention because of its simple structure, no heating, no electromagnetic interference, environmental protection and easy miniaturization. Wind energy is a reproducible resource. Wind energy harvester based on piezoelectric intelligent material can be named piezoelectric wind energy harvesting which converts wind energy into electric power and will have great application prospect. To promote the development of piezoelectric wind energy harvesting technology, research statuses on piezoelectric wind energy harvesting technology are reviewed. The existing problem and development direction about piezoelectric wind energy harvester in the future are discussed. The study will be helpful for researchers engaged in piezoelectric wind energy harvesting.
文摘Cordyceps is treasured entomopathogenic fungi that have been used as antitumor,immunomodulating,antioxidant,and pro-sexual agent.Cordyceps,also called DongChongXiaCao in Chinese,Yartsa Gunbu(Tibetan),means winter worm-summer grass.Natural Cordyceps sinensis with parasitic hosts is difficult to be collected and the recent findings on its potential pharmacological functions,resulted in skyrocketing prices.Therefore,finding a mass-production method or an alternative for C.sinensis products is a top-priority task.In this review,we describe current status of Cordyceps research and its recent developments in Taiwan.The content and pharmacological activities of four major industrial species of Cordyceps(C.sinensis,Cordyceps militaris,Cordyceps cicadae and Cordyceps sobolifera)used in Taiwan,were reviewed.Moreover,we highlighted the effect of using different methods of fermentation and production on the morphology and chemical content of Cordyceps sp.Finally,we summarized the bottle-necks and challenges facing Cordyceps research as well as we proposed future road map for Cordyceps industry in Taiwan.
文摘Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
基金supported by the National Natural Science Foundation of China(Grant No.32272538)China Agriculture Research System(Grant No.CARS-01)the Fundamental Research Funds for Central Public Welfare Research Institute,China(Grant No.CPSIBRF-CNRRI-202406).
文摘In Nilaparvata lugens,a serious and widespread rice pest,high fecundity is one of the important reasons for large populations and outbreaks.As embryogenesis is a critical process associated with insect fecundity,this study investigated the function of the Mucin2-like gene(NlMuc2)in the embryogenesis of N.lugens.The results showed that NlMuc2 was highly expressed in female reproductive organs and in 1-day-old eggs.Knockdown of NlMuc2 via RNA interference(RNAi)in 3rd instar nymphs resulted in increased mortality.In 5th instar nymphs,NlMuc2 knockdown led to a dramatic reduction in egg hatchability from 86.0%to 24.0%,offspring numbers from 330.4 to 81.5,egg count from 382.4 to 217.0,and resulted in 86.0%of eggs exhibiting inverted embryos.In newly emerged females,NlMuc2 knockdown retarded ovarian development and decreased the number of mature eggs,with 51.0%of eggs containing inverted embryos.Transcriptome sequencing analysis of eggs revealed that numerous genes were downregulated after NlMuc2 knockdown,with 16 and 15 downregulated genes enriched in the Wnt and MAPK pathways,respectively.Temporal and spatial expression profiling of selected differentially expressed genes,including Axin,δ-Catenin,Glypican-4-like,and Ror-like in the Wnt pathway,and MKK4 in the MAPK pathway,showed expression patterns similar to NlMuc2.Knockdown of Ror-like,Glypican-4-like,or MKK4 reduced the total number of eggs.Knockdown of Axin or MKK4 reduced the egg hatchability.A similar phenotype of eggs with inverted embryos was also observed in eggs laid by dsMKK4-and dsAxin-treated females.Thus,NlMuc2 is involved in embryonic development mainly by regulating the Wnt and MAPK signaling pathways.These findings may provide new targets for pesticide design and RNAi-based control of N.lugens,and will also provide new insights into insect embryonic development and the function of insect mucins.
基金This work was supported by the National Natural Science Foundation of China(Grant 11702315,92052301)the National Key Research and Development Program of China(Grant 2016YFA0401200).
文摘To understand fundamental problems in hypersonic laminar-turbulent boundary layer transition for three-dimensional complex vehicles,a new standard model with typical lifting-body features has been proposed,named as hypersonic transition research vehicle(HyTRV).The configuration of HyTRV is fully analytical,and details of the design process are discussed in this study.The transition characteristics for HyTRV are investigated using three combined methods,i.e.,theoretical analyses,numerical simulations,and wind tunnel experiments.Results show that the fully analytic parameterization design of HyTRV can satisfy the model simplification requirements from both numerical simulations and wind tunnel experiments.Meanwhile,the flow field of HyTRV reveals typical transition mechanisms in six relatively separated regions,including the streamwise vortex instability,crossflow instability,secondary instability,and attachment-line instability.Therefore,the proposed HyTRV model is valuable for fundamental researches in hypersonic boundary layer transition.
基金supported by the National Natural Science Foundation of China (No. 11372337)
文摘Numerical simulation of wing stall of a blended flying wing configuration at transonic speed was conducted using both delayed detached eddy simulation(DDES) and unsteady Reynolds-averaged Navier-Stokes(URANS) equations methods based on the shear stress transport(SST) turbulence model for a free-stream Mach number 0.9 and a Reynolds number 9.6 × 10. A joint time step/grid density study is performed based on power spectrum density(PSD) analysis of the frequency content of forces or moments, and medium mesh and the normalized time scale0.010 were suggested for this simulation. The simulation results show that the DDES methods perform more precisely than the URANS method and the aerodynamic coefficient results from DDES method compare very well with the experiment data. The angle of attack of nonlinear vortex lift and abrupt wing stall of DDES results compare well with the experimental data. The flow structure of the DDES computation shows that the wing stall is caused mainly by the leeward vortex breakdown which occurred at x/x= 0.6 at angle of attack of 14°. The DDES methods show advantage in the simulation problem with separation flow. The computed result shows that a shock/vortex interaction is responsible for the wing stall caused by the vortex breakdown. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Wing body thickness has a great influence on shock and shock/vortex interactions, which can make a significant difference to the vortex breakdown behavior and stall characteristic of the blended flying wing configuration.
基金supported by the National Transgenic Crops Program, China (Grant No. 2008ZX08001-006)the Research Funds for Public Benefit in Ministry of Agriculture, China (Grant No. 200803056)+1 种基金the Key Support Program of Jiangsu Science and Technology, China (Grant No. BE2008354)the Self-directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province, China (Grant No. CX [08]603)
文摘Rice with low glutelin content is suitable as functional food for patients affected by kidney failure. Low glutelincontent gene Lgc1 in rice has a 3.5-kb deletion between two highly similar glutelin genes GluB4 and GluB5, which locates on the short arm of chromosome 2. To improve the selection efficiency in low glutelin-content rice breeding, two molecular markers designated as InDel-Lgc1-1 and InDel-Lgc1-2 were developed to detect the low glutelin-content gene Lgc1. A double PCR detection indicated that combined use of the two markers could easily distinguish the genotypes of Lgc1 from different rice varieties. Therefore, as a simple and low-cost technique, the molecular marker could be widely used to identify different varieties with Lgc1 gene and applied in marker-assisted selection of low glutelin-content rice.
文摘Seawater desalination has been peoples fond dream since ancient times, the dream is now becoming a reality. This paper presents a brief development history of reverse osmosis. Much attention was paid to innovative development in membranes, modules, equipments and applied technology, including asymmetric and composite membranes, spiral-wound element and hollow fiber module, energy recovery equipments and different technological processes. The extension of reverse osmosis, such as desalination, pre-concentration, integrated processes and nanofiltration, is also briefly mentioned.
基金support by the National Natural Science Foundation of China(No.11902336)State Key Laboratory of Aerodynamics Foundation of China(Nos.SKLA2019020201,JBKYC190103)+1 种基金CARDC Fundamental and Frontier Technology Research Fund,China(No.PJD20180144)China Scholarship Council.
文摘Flow control using surface Dielectric Barrier Discharge(DBD)plasma actuators driven by a sinusoidal alternating-current power supply has gained significant attention from the aeronautic industry.The induced flow field of the plasma actuator,with the starting vortex in the wall jet,plays an important role in flow control.However,the energy consumed for producing the induced flow field is only a small fraction of the total energy utilized by the plasma actuator,and most of the total energy is used in gas heating and dielectric heating.Therefore,an in-depth analysis of the thermal characteristics of the plasma actuator is the key to develop its potential capability further.In addition,compared with the investigation on the aerodynamic characteristics of the plasma actuator,there is a relative lack of detail in the study of its thermal characteristics.Understanding the thermal characteristics of the plasma actuator is of great interest for providing a deeper insight into the underlying working principles,advancing its numerical simulation model,prolonging its life,and achieving several potential engineering applications,such as antiicing and deicing.The present paper reviews the thermal characteristics of the plasma actuator,summarizes the influence of the dielectric film and actuation parameters on heating,and discusses the formation and transfer mechanism of the induced heating based on the discharge regimes of the plasma actuator in one cycle.
文摘The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant.Recent developments,based on enriching protein in cassava chips,have yielded yeast fermented cassava chip protein(YEFECAP) providing up to 47.5% crude protein(CP),which can be used to replace soybean meal.The use of fodder trees has been developed through the process of pelleting;Leucaena leucocephala leaf pellets(LLP),mulberry leaf pellets(MUP) and mangosteen peel and/or garlic pellets,can be used as good sources of protein to supplement ruminant feeding.Apart from producing volatile fatty acids and microbial proteins,greenhouse gases such as methane are also produced in the rumen.Several methods have been used to reduce rumen methane.However,among many approaches,nutritional manipulation using feed formulation and feeding management,especially the use of plant extracts or plants containing secondary compounds(condensed tannins and saponins) and plant oils,has been reported.This approach could help todecrease rumen protozoa and methanogens and thus mitigate the production of methane.At present,more research concerning this burning issue-the role of livestock in global warming-warrants undertaking further research with regard to economic viability and practical feasibility.
基金the Open Fund of Key Laboratory of Power Research of China and the National Natural Science Foundation of China(No.2018YFC0809500)the Sichuan Science and Technology Plan Project,China(No.23NSFSC1923)+2 种基金the Laboratory of Icing and Anti/De-icing of CARDC,China(No.IADL20220406)the Key R&D Special Projects in Henan Province,China(No.221111321000)the Basic Scientific Research Business Expenses of Central Universities,China(No.J2023-033)。
文摘The impact of unstable supercooled water droplets suspended in the cloud on the solid will cause its surface to freeze,and the flight safety of the aircraft will be seriously affected when flying in this environment.Aircraft icing protection system is an important device to reduce icing accidents and improve aircraft safety performance,which is of great significance to ensure flight safety.Based on the energy source,this paper proposes a general strategy for constructing an aircraft icing protection system,including Active Anti-icing and De-icing(AAD)system,Passive Antiicing and De-icing(PAD)system and Composite Anti-icing and De-icing(CAD)system.The principle,scope of application,advantages and disadvantages of aircraft anti-icing and de-icing technologies such as electric pulse de-icing,low-frequency piezoelectric de-icing,and hydrophobic material anti-icing are explored in detail,and the corresponding improvement measures are proposed.The future development of aircraft anti-icing and de-icing technology is prospected,and some new ideas are provided for the improvement of aircraft anti-icing and de-icing technology.
文摘Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.
基金Project supported by the National Natural Science Foundation of China(Grant No.61401430)
文摘The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/d B and 2.5°/d B, respectively, which are 20.1°/d B and 1.6°/d B lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 d Bc lower than that of the original tube.
文摘Hexafluorobutadiene is a new plasma etching gas for semiconductor molectron which has perfect properties and also is a preceding monomer that can be used for synthesizing many fluorinated compounds. This paper described the different synthesis methods of perflurobutadiene from different materials, and contrasted the characteristic of each synthetic method. The route from tetrafluoroethylene has more industrialization prospects.
基金Hohai University Startup Outlay for Doctor Scientific Research (2084/40601136)
文摘A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.
文摘Reverse transcription quantitative PCR (RT-qPCR) is a highly sensitive technique that has become the standard for the analysis of differences in gene expression in response to experimental treatments or among genetic sources. The accuracy of the RT-qPCR results can be significantly affected by uncontrolled sources of variation that can be accounted for normalization with so-called reference genes stably expressed under various conditions. In this study we assessed the stability of 21 reference gene candidates in crowns of two alfalfa cultivars (Apica and Evolution) exposed to various environmental conditions (cold, water stress and photoperiod) and from above ground biomass of the cultivar Orca sampled at three developmental stages (vegetative, full bloom and mature pods). Candidates were selected based on their previous identification in other plant species or their stable expression in a differential hybridization of alfalfa ESTs with cDNA from non-acclimated and cold-acclimated alfalfa. Genes encoding ubiquitin protein ligase 2a (UBL-2a), actin depolymerizing factor (ADF) and retention in endoplasmic reticulum 1 protein (Rer1) were the most stable across experimental conditions. Conversely β-actin (Act), α-tubulin (Tub) and glyce-raldehyde 3-phosphate dehydrogenase (GAPDH) frequently used as “housekeeping genes” in gene expression studies showed poor stability. No more than two reference genes were required to normalize the gene expression data under each condition. Normalization of the expression of genes of interest with unstable reference genes led to observations that were conflicting with those made with validated reference genes and that were in some cases inconsistent with the current knowledge of the trait. The reference genes identified in this study are strong candidates for normalization of gene expression in cultivated alfalfa.
基金financially supported by the National Natural Science Foundation of China(31571693)the earmarked fund for China Agriculture Research System(CARS-04-04B)。
文摘Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture. Cell division and elongation form the internode of soybean and result in different plant heights and lodging resistance. Yet the mechanisms behind are unclear in soybean. To elucidate the mechanism of the concentration difference of auxin related to stem development in soybean, samples of apical shoot, elongation zone, and mature zone from the developing stems of soybean seedlings, Charleston, were harvested and measured for auxin concentration distributions and metabolites to identify the common underlying mechanisms responsible for concentration difference of auxin. Distribution of indole-3-acetic acid(IAA), indole-3-butyric acid(IBA), and methylindole-3-acetic acid(Me-IAA) were determined and auxin concentration distributions were found to have a complex regulation mechanism. The concentrations of IAA and Me-IAA in apical shoot were significantly different between elongation zone and mature zone resulting in an IAA gradient. Tryptophan dependent pathway from tryptamine directly to IAA or through indole-3-acetonitrile to IAA and from indole-3-propionic acid(IPA) to IAA were three primary IAA synthesis pathways. Moreover, some plant metabolites from flavonoid and phenylpropanoid synthesis pathways showed similar or reverse gradient and should involve in auxin homeostasis and concentration difference. All the data give the first insight in the concentration difference and homeostasis of auxin in soybean seedlings and facilitate a deeper understanding of the molecular mechanism of stem development and growth. The gathered information also helps to elucidate how plant height is formed in soybean and what strategy should be adopted to regulate the lodging resistance in soybean.
基金Project supported by the Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research of China(No.614220119040101)the National Natural Science Foundation of China(No.91852115)。
文摘In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the study of S809 low-speed and high-angle airfoil flow.The method is based on the ensemble transform Kalman filter(ETKF)algorithm,which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity constants,increasing the constant disturbance dimensions and designing a fine disturbance interval.The results show that the pressure distribution on the airfoil surface after assimilation is closer to the experimental value than that of the standard Spalart-Allmaras(S-A)model.The separated vortex estimated by filtering is fuller,and the eddy viscosity field information is more abundant,which is physically consistent with the observation information.Therefore,the data assimilation method based on the improved ensemble strategy can more accurately and effectively describe complex turbulence phenomena.
基金supported by the National Natural Science Foundation of China(No.51406222 and No.51376194)
文摘An experimental investigation on ignition characteristics with air-throttling in an ethylene-fueled scramjet under flight Ma 6.5 conditions was conducted.The dynamic process of air-throttling ignition was explored systematically.The influences of throttling parameters,i.e.,throttling mass rate and duration,were investigated.When the throttling mass rate was 45% of the inflow mass rate,ambient ethylene could be ignited reliably.The delay time from ignition to throttling was about 45–55 ms.There was a threshold of throttling duration under a certain throttling mass rate.It was shorter than 100 ms when the throttling mass rate was 45%.While a 45%throttling mass rate would make the shock train propagate upstream to the isolator entry in about10–15 ms,four lower throttling mass rates were tested,including 30%,25%,20%,and 10%.All of these throttling mass rates could ignite ethylene.However,combustion performances varied with them.A higher throttling mass rate made more ethylene combust and produced higher wall pressure.Through these experiments,some aspects of the relationships between ignition,flame stabilization,combustion efficiency,and air-throttling parameters were brought to light.These results could also be a benchmark for CFD validation.