期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Inverse identification of damage and fracture properties in fine‑grained nuclear graphite using finite element analysis
1
作者 Jie Shen Hong‑Niao Chen +2 位作者 DKLTsang Xiao Li Shi‑Gui Zhao 《Nuclear Science and Techniques》 2025年第10期192-210,共19页
Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of... Identifying the damage and fracture properties of nuclear graphite materials and accurately simulating them are crucial when designing graphite core structures.To simulate the damage evolution and crack propagation of graphite under stress in a finite element model,compression tests on disks and three-point bending tests on center-notched beams for fine-grained graphite(CDI-1D and IG11 graphite)were conducted.During these tests,digital image correlation and electronic speckle pattern interferometry techniques were utilized to observe the surface full-field displacements of the specimens.A segmented finite element inverse analysis method was developed to characterize the graphite’s damage evolution by quantifying the reduction in Young’s modulus with tensile and compressive strains in disk specimens.The fracture energy and bilinear tensile softening curve of the graphite were determined by comparing the load–displacement responses of the three-point bending tests and the finite element simulation.Finally,by combining the identified damage laws with a fracture criterion based on fracture energy,a damage–fracture model was established and used to simulate tensile tests on L-shaped specimens with different fillet radii.Simulations indicate that the damage area at the fillet expands with increasing radius,creating a blunting effect that enhances the load-bearing capacity of the specimens.This damage–fracture model can be applied to simulate graphite components in core structures. 展开更多
关键词 GRAPHITE Fracture energy Damage characterization Finite element analysis
在线阅读 下载PDF
Simulation research on the energy dissipation and shock absorption performance of a swing column device based on fuzzy control
2
作者 Zheng Yong Yuan Bo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期987-998,共12页
Double-column bridge piers are prone to local damage during earthquakes,leading to the destruction of bridges.To improve the earthquake resistance of double-column bridge piers,a novel swing column device(SCD),consist... Double-column bridge piers are prone to local damage during earthquakes,leading to the destruction of bridges.To improve the earthquake resistance of double-column bridge piers,a novel swing column device(SCD),consisting of a magnetorheological(MR)damper,a current controller,and a swing column,was designed for the present work.To verify the seismic energy dissipation ability of the SCD,a lumped mass model for a double-column bridge pier with the SCD was established according to the low-order modeling method proposed by Steo.Furthermore,the motion equation of the double-column bridge pier with the SCD was established based on the D′Alembert principle and solved with the use of computational programming.It was found that the displacement response of the double-column bridge pier was effectively controlled by the SCD.However,due to rough current selection and a time delay,there is a significant overshoot of the bridge acceleration using SCD.Hence,to solve the overshoot phenomenon,a current controller was designed based on fuzzy logic theory.It was found that the SCD design based on fuzzy control provided an ideal shock absorption effect,while reducing the displacement and acceleration of the bridge pier by 36.43%‒40.63%and 30.06%‒33.6%,respectively. 展开更多
关键词 swing column device double-column bridge pier fuzzy control MR damper structural control low-element modeling method
在线阅读 下载PDF
Dynamic Behavior of a New Hydraulic Steel Gate
3
作者 LUO Yaozhi ZHU Shizhe CHENG Xi 《Transactions of Tianjin University》 EI CAS 2006年第B09期238-242,共5页
A new style of hydraulic steel gate based on the principle of bionics is proposed in this paper. It has a fish-like shape and consists of right arches, invert arches, connection components and a face plate. It would b... A new style of hydraulic steel gate based on the principle of bionics is proposed in this paper. It has a fish-like shape and consists of right arches, invert arches, connection components and a face plate. It would be first applied in the project of Caoe River Sluice, used as both tidal barrage and flood gate. Compared with conventional hydraulic steel gate of beam grids, this new style of hydraulic steel gate can save up to 30%-50% of steel consumption. The dynamic behavior of the new gate under the impact load of tidal bore is investigated. The impact load of tidal bore is considered by a load spectrum obtained by field observation over a long period of time. Then a numerical analysis of the gate under the load spectrum is carried out by finite element method. The fluid-structure interaction is considered in the analysis. And a comparison between the response of the gate under the impact load and the response of the gate under the corresponding static load is conducted and indicates that the gate has a dynamic magnification factor of 1.2. 展开更多
关键词 DOUBLE-ARCH dynamic property impact load tidal bore dynamic response
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部