Dear President Hao Yang,
My heartfelt congratulations to you and your colleagues at the People's Medical Publishing House for successfully launching of the Global Health Journal this week in Xi'an.The launchi...Dear President Hao Yang,
My heartfelt congratulations to you and your colleagues at the People's Medical Publishing House for successfully launching of the Global Health Journal this week in Xi'an.The launching of the journal is the culmination of many years of hard work and persistence.展开更多
Heart rate variability(HRV)that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system(ANS)has attracted considerable attention.However,traditiona...Heart rate variability(HRV)that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system(ANS)has attracted considerable attention.However,traditional electrocardiogram(ECG)devices for HRV analysis are bulky,and hard wires are needed to attach measuring electrodes to the chest,resulting in the poor wearable experience during the long-term measurement.Compared with that,wearable electronics enabling continuously cardiac signals monitoring and HRV assessment provide a desirable and promising approach for helping subjects determine sleeping issues,cardiovascular diseases,or other threats to physical and mental well-being.Until now,significant progress and advances have been achieved in wearable electronics for HRV monitoring and applications for predicting human physical and mental well-being.In this review,the latest progress in the integration of wearable electronics and HRV analysis as well as practical applications in assessment of human physical and mental health are included.The commonly used methods and physiological signals for HRV analysis are briefly summarized.Furthermore,we highlighted the research on wearable electronics concerning HRV assessment and diverse applications such as stress estimation,drowsiness detection,etc.Lastly,the current limitations of the integrated wearable HRV system are concluded,and possible solutions in such a research direction are outlined.展开更多
Heterogeneous composites have strong anisotropy and are prone to dynamic recrystallization during hot compression,making the me-chanical response highly nonlinear.Therefore,it is a very challenging task to intellectua...Heterogeneous composites have strong anisotropy and are prone to dynamic recrystallization during hot compression,making the me-chanical response highly nonlinear.Therefore,it is a very challenging task to intellectually judge the thermal deformation characteristics of magnesium matrix composites(MgMCs).In view of this,this paper introduces a method to accurately solve the thermoplastic deformation of composites.Firstly,a hot compression constitutive model of magnesium matrix composites based on stress softening correction was established.Secondly,the complex quasi-realistic micromechanics modeling of heterogeneous magnesium matrix composites was conducted.By introducing the recrystallization softening factor and strain parameter into the constitutive equation,the accurate prediction of the global rheological response of the composites was realized,and the accuracy of the new constitutive model was proved.Finally,the thermal pro-cessing map of magnesium matrix composites was established,and the suitable processing range was chosen.This paper has certain guiding values for the prediction of the thermodynamic response and thermal processing of magnesium matrix composites.展开更多
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this a...The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency.展开更多
In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strat...In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development.展开更多
The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by ...The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by tensile and hardness tests,and the SEM morpho-logies of the tensile fracture are observed.The results show that the weld zone is composed of columnarβphase with coarse grains and acicular martensiteα',and small secondaryα'phases in different directions are formed acicular martensiteα'.The microstructure at the boundary between the HAZ and the weld is composed ofα'andαphases,the microstructure at the boundary between the HAZ and the base metal is composed of the initial(αandβ)andαphases,and the microstructure of the middle transition zone of the HAZ is composed of a small amount ofα'andαphase of high temperatureβphase’transformation and initial(αandβ)phases.The average tensile strength of TC4 titanium alloy laser beam welded joints is 1056 MPa,and the average elongation is 9.0%,which are lower than the tensile strength and the elongation of the base metal respectively.The fracture is ductile fracture,and the hardness of the weld zone is the highest and that of the HAZ is the lowest.展开更多
Producing renewable e-methanol from e-hydrogen and diverse carbon sources is an essential way for clean methanol preparation.Despite this,the technical and economic feasibility of different e-methanols has yet to be t...Producing renewable e-methanol from e-hydrogen and diverse carbon sources is an essential way for clean methanol preparation.Despite this,the technical and economic feasibility of different e-methanols has yet to be thoroughly compared,leaving the most promising pathway to achieve commercialization yet evident.This paper reports a preliminary analysis of the lifecycle greenhouse gas(GHG)emissions and costs of four renewable e-methanols with different carbon sources:bio-carbon,direct air capture(DAC),fossil fuel carbon capture(FFCC),and fossil.The results indicate that renewable e-methanol costs(4167−10250 CNY/tonne)2−4 times the market rate of grey methanol.However,with the carbon tax and the projected decline in e-H2 costs,blue e-methanol may initially replace diesel in inland navigation,followed by a shift from heavy fuel oil(HFO)to green e-methanol in ocean ship-ping.Furthermore,the e-H2 cost and the availability of green carbon are vital factors affecting cost-effectiveness.A reduction in e-H2 cost from 2.1 CNY/Nm3 to 1.1 CNY/Nm3 resulting from a transition from an annual to a daily scheduling period,could lower e-methanol costs by 1200 to 2100 CNY.This paper also provides an in-depth discussion on the challenges and opportunities associated with the various green carbon sources.展开更多
Two kinds of pre-alloyed GH3230 powders,each with different Si and Mn compositions,were employed to fabricate components through laser powder bed fusion(LPBF).Microstructural analysis reveals that microcrack formation...Two kinds of pre-alloyed GH3230 powders,each with different Si and Mn compositions,were employed to fabricate components through laser powder bed fusion(LPBF).Microstructural analysis reveals that microcrack formation in the GH3230 sample results from both microsegregation and thermal cycling-induced strain.Both samples with different contents of Si and Mn exhibit typical epitaxial growth of columnar dendrites with directional anisotropy,indicating minimal variation in microstructure under identical thermal cycling conditions.The occurrence of hot cracking is influenced by various factors,with chemical composition playing a crucial role.The presence of these cracks significantly impacts the mechanical properties of the component.The ultimate tensile strength and elongation of the GH3230-L sample,which has reduced Si and Mn content,show significant improvements compared to the GH3230 sample.The ultimate tensile strength increases from 735.0 MPa to 790.0 MPa,and elongation rises substantially from 11.3%to 35.2%.Thermodynamic simulations confirm that variations in Si and Mn content influence hot cracking sensitivity.Reducing Si and Mn levels narrows the solidification range,which helps to minimize the formation of hot cracks by enhancing liquid filling at grain boundaries.展开更多
When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constr...When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs.展开更多
This work investigated the gradient microstructure evolution and tensile property of LPBF fabricated 15-5 precipitation hardening stainless steel in post-process direct ageing(DA)and solution treating&ageing(STA)....This work investigated the gradient microstructure evolution and tensile property of LPBF fabricated 15-5 precipitation hardening stainless steel in post-process direct ageing(DA)and solution treating&ageing(STA).The varied microstructures for austenite and small-sized oxide inclusions at different sample heights in the as-built(AB)condition was generally preserved after DA treatment.However,austenite was almost disappeared,and oxide particle grew significantly after the STA treatment.As a result,the tensile property differences in sample top and bottom for AB and DA conditions did not occur in the STA samples.For the influence of post-process heat treatment,the STA condition had the highest yield strength due to the highest volume fraction of nano-sized Cu precipitates.However,the DA specimen had the highest ultimate tensile strength and elongation owing to the considerable amount of austenite phase and associated transformation induced plasticity effect.展开更多
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ...Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.展开更多
Tantalum electrolytic capacitors have performance advantages of long life,high temperature stability,and high energy storage capacity and are essential micro-energy storage devices in many pieces of military mechatron...Tantalum electrolytic capacitors have performance advantages of long life,high temperature stability,and high energy storage capacity and are essential micro-energy storage devices in many pieces of military mechatronic equipment,including penetration weapons.The latter are high-value ammunition used to strike strategic targets,and precision in their blast point is ensured through the use of penetration fuzes as control systems.However,the extreme dynamic impact that occurs during penetration causes a surge in the leakage current of tantalum capacitors,resulting in a loss of ignition energy,which can lead to ammunition half-burst or even sometimes misfire.To address the urgent need for a reliable design of tantalum capacitor for penetration fuzes,in this study,the maximum acceptable leakage current of a tantalum capacitor during impact is calculated,and two different types of tantalum capacitors are tested using a machete hammer.It is found that the leakage current of tantalum capacitors increases sharply under extreme impact,causing functional failure.Considering the piezoresistive effect of the tantalum capacitor dielectric and the changes in the contact area between the dielectric and the negative electrode under pressure,a force–electric simulation model at the microscale is established in COMSOL software.The simulation results align favorably with the experimental results,and it is anticipated that the leakage current of a tantalum capacitor will experience exponential growth with increasing pressure,ultimately culminating in complete failure according to this model.Finally,the morphological changes in tantalum capacitor sintered cells both without pressure and under pressure are characterized by electron microscopy.Broken particles of Ta–Ta_(2)O_(5)sintered molecular clusters are observed under pressure,together with cracks in the MnO_(2)negative base,proving that large stresses and strains are generated at the micrometer scale.展开更多
An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the...An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the gravitational interaction, the exploration of swapping between parameters of time and space, and the provision of a way to handle imaginary terms. The existence of phase shifts in the gravitational interaction is documented via re-interpretation of older quantitative predictions, and is specifically linked to the Higgs field mechanism. Same as in electronics, a phase shift splits energy into real and imaginary coordinates. This allows to quantitatively treat inertia as an inductive-like potential, alongside the swapping of parameters of time and space. That also allows to treat the Bernoulli pressure in quantitative analogy to a magnetic potential, as well as barrier penetration in quantitative symmetry to the crossing of displacement-current through a capacitor. The findings shed light on how fields & forces, including reaction forces function, while the role of imaginary numbers is analyzed. Interaction of fields with quantum particles is discussed to involve a Fourier-series effect that results in energy quantization. The role of phase shifts becomes essential in bridging between wave nature and effects of relativity, and the Weinberg angle is explained to have the role of an inductive-like shift. The precise value of this angle is proposed to link to elementary particles’ properties like spin, or the value of quarks’ charge. Symmetries introduced allow to address the abundance of matter over antimatter in certain analogy to theory from electronics, to address galaxy rotation curves through an interaction involving negative energy, and more. The new concepts open up room for advancements in energy exploitation over interdisciplinary areas.展开更多
The influences of the hot extrusion process on the microstructure, corrosion behavior and corrosion mechanism for Mg-Y magnesium alloy were studied by means of the microstructure observation, weight loss test, electro...The influences of the hot extrusion process on the microstructure, corrosion behavior and corrosion mechanism for Mg-Y magnesium alloy were studied by means of the microstructure observation, weight loss test, electrochemical test and corrosion morphology test. The results showed that with increasing of the extrusion ratio, the shear flow line on the vertical section of the extruded alloy increased, the shear bands parallel lines became more clearly visible, and a large number of fine equiaxed grains distributed in parallel with the flow lines. The open circuit potential had a certain degree of improvement after extrusion, the open circuit potential increased with increment of extrusion ratio, and the corrosion potential of the vertical section was higher than that of the same alloy in the same compression ratio. The shift rate of the corrosion potential relatively became larger with increasing of the extrusion ratio, and the cathode corrosion current corresponding to the branch migration shifted to the positive direction. The high frequency capacitive arc increased with increment of the extrusion ratio, and the radius of capacitive arc of the vertical section was slightly larger than that of the transverse section. The corrosion morphologies of Mg-0.25 Y alloy were uniform corrosion, and the corrosion morphologies of Mg-(2.5, 5, 8 and 15) were the pitting corrosion and the small range, deep depth localized corrosion.展开更多
Number concentration and distribution of airborne particles in the size range 5.6 to 560 nm diameter were measured in Beijing for a 15-d period in winter 2005. Dally average number concentrations of nucleation mode (...Number concentration and distribution of airborne particles in the size range 5.6 to 560 nm diameter were measured in Beijing for a 15-d period in winter 2005. Dally average number concentrations of nucleation mode (5.6-20 um), Aitken mode (20-100 um), and accumulation mode (100-560 um) particles, and total particles were 17500, 32000, 4000, and 53500 cm^-3, respectively. Average particle size distribution was monomodal with a mode diameter of about 40 um at night and bimodal with mode diameters of about 10 and about 40 um during the daytime. New particle formation events, which were connected to diurnal variation of nucleation mode particles, were observed in more than half of the observation days. The events often started around 10:00-11:00 Chinese Standard Time (CST) and ended up after 3-4 h. Concentrations of Aitken and accumulation mode particles increased from midnight and reached their maxima at about 10:00 CST, and then decreased and became the lowest in the afternoon. Analysis of diurnal cycles in traffic volume and meteorological parameters revealed that the accumulation of the particles in Aitken and accumulation modes in the morning was influenced by formation of an inversion and increase in vehicle emission, and dispersion of such particles in the afternoon was associated with more effective vertical mixing and higher wind speed.展开更多
The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at t...The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid(VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.展开更多
In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation eval...In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better.展开更多
Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp...Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.展开更多
文摘Dear President Hao Yang,
My heartfelt congratulations to you and your colleagues at the People's Medical Publishing House for successfully launching of the Global Health Journal this week in Xi'an.The launching of the journal is the culmination of many years of hard work and persistence.
基金supported in part by National Science and Technology Major Project from the Minister of Science and Technology of China(2018AAA0103100).
文摘Heart rate variability(HRV)that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system(ANS)has attracted considerable attention.However,traditional electrocardiogram(ECG)devices for HRV analysis are bulky,and hard wires are needed to attach measuring electrodes to the chest,resulting in the poor wearable experience during the long-term measurement.Compared with that,wearable electronics enabling continuously cardiac signals monitoring and HRV assessment provide a desirable and promising approach for helping subjects determine sleeping issues,cardiovascular diseases,or other threats to physical and mental well-being.Until now,significant progress and advances have been achieved in wearable electronics for HRV monitoring and applications for predicting human physical and mental well-being.In this review,the latest progress in the integration of wearable electronics and HRV analysis as well as practical applications in assessment of human physical and mental health are included.The commonly used methods and physiological signals for HRV analysis are briefly summarized.Furthermore,we highlighted the research on wearable electronics concerning HRV assessment and diverse applications such as stress estimation,drowsiness detection,etc.Lastly,the current limitations of the integrated wearable HRV system are concluded,and possible solutions in such a research direction are outlined.
基金supported by the National Natural Science Foundation of China with the project of No.52305158Youth Innovation Team of Shaanxi Universities(2024),Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team construction of No.2024QCY-KXJ-112,Funding from Aero Engine Cooperation of China(No.ZZCX-2022-020)the industry-university-research cooperation of Eighth Research Institute of China Aerospace Science and Technology Corporation with the project of No.USCAST2021-1.
文摘Heterogeneous composites have strong anisotropy and are prone to dynamic recrystallization during hot compression,making the me-chanical response highly nonlinear.Therefore,it is a very challenging task to intellectually judge the thermal deformation characteristics of magnesium matrix composites(MgMCs).In view of this,this paper introduces a method to accurately solve the thermoplastic deformation of composites.Firstly,a hot compression constitutive model of magnesium matrix composites based on stress softening correction was established.Secondly,the complex quasi-realistic micromechanics modeling of heterogeneous magnesium matrix composites was conducted.By introducing the recrystallization softening factor and strain parameter into the constitutive equation,the accurate prediction of the global rheological response of the composites was realized,and the accuracy of the new constitutive model was proved.Finally,the thermal pro-cessing map of magnesium matrix composites was established,and the suitable processing range was chosen.This paper has certain guiding values for the prediction of the thermodynamic response and thermal processing of magnesium matrix composites.
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
文摘The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency.
基金founded by National Key R&D Program of China (No.2021YFB2601200)National Natural Science Foundation of China (No.42171416)Teacher Support Program for Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture (No.JDJQ20200307).
文摘In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development.
基金supported by the Science and Technology Plan Foundation of Guizhou(Guizhou Science Support[2021]General 337)Anhui University Natural Science Key Research Project(2022AH052357).
文摘The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by tensile and hardness tests,and the SEM morpho-logies of the tensile fracture are observed.The results show that the weld zone is composed of columnarβphase with coarse grains and acicular martensiteα',and small secondaryα'phases in different directions are formed acicular martensiteα'.The microstructure at the boundary between the HAZ and the weld is composed ofα'andαphases,the microstructure at the boundary between the HAZ and the base metal is composed of the initial(αandβ)andαphases,and the microstructure of the middle transition zone of the HAZ is composed of a small amount ofα'andαphase of high temperatureβphase’transformation and initial(αandβ)phases.The average tensile strength of TC4 titanium alloy laser beam welded joints is 1056 MPa,and the average elongation is 9.0%,which are lower than the tensile strength and the elongation of the base metal respectively.The fracture is ductile fracture,and the hardness of the weld zone is the highest and that of the HAZ is the lowest.
基金supported by the National Natural Science Foundation of China(U22A20220)the China Postdoctoral Science Foundation(2023M741887).
文摘Producing renewable e-methanol from e-hydrogen and diverse carbon sources is an essential way for clean methanol preparation.Despite this,the technical and economic feasibility of different e-methanols has yet to be thoroughly compared,leaving the most promising pathway to achieve commercialization yet evident.This paper reports a preliminary analysis of the lifecycle greenhouse gas(GHG)emissions and costs of four renewable e-methanols with different carbon sources:bio-carbon,direct air capture(DAC),fossil fuel carbon capture(FFCC),and fossil.The results indicate that renewable e-methanol costs(4167−10250 CNY/tonne)2−4 times the market rate of grey methanol.However,with the carbon tax and the projected decline in e-H2 costs,blue e-methanol may initially replace diesel in inland navigation,followed by a shift from heavy fuel oil(HFO)to green e-methanol in ocean ship-ping.Furthermore,the e-H2 cost and the availability of green carbon are vital factors affecting cost-effectiveness.A reduction in e-H2 cost from 2.1 CNY/Nm3 to 1.1 CNY/Nm3 resulting from a transition from an annual to a daily scheduling period,could lower e-methanol costs by 1200 to 2100 CNY.This paper also provides an in-depth discussion on the challenges and opportunities associated with the various green carbon sources.
基金supported by the Liaoning Doctoral Research Start-up Fund project(Grant No.2023-BS-215).
文摘Two kinds of pre-alloyed GH3230 powders,each with different Si and Mn compositions,were employed to fabricate components through laser powder bed fusion(LPBF).Microstructural analysis reveals that microcrack formation in the GH3230 sample results from both microsegregation and thermal cycling-induced strain.Both samples with different contents of Si and Mn exhibit typical epitaxial growth of columnar dendrites with directional anisotropy,indicating minimal variation in microstructure under identical thermal cycling conditions.The occurrence of hot cracking is influenced by various factors,with chemical composition playing a crucial role.The presence of these cracks significantly impacts the mechanical properties of the component.The ultimate tensile strength and elongation of the GH3230-L sample,which has reduced Si and Mn content,show significant improvements compared to the GH3230 sample.The ultimate tensile strength increases from 735.0 MPa to 790.0 MPa,and elongation rises substantially from 11.3%to 35.2%.Thermodynamic simulations confirm that variations in Si and Mn content influence hot cracking sensitivity.Reducing Si and Mn levels narrows the solidification range,which helps to minimize the formation of hot cracks by enhancing liquid filling at grain boundaries.
基金This work is supported by the National Natural Science Foundation of China(62262016,61961160706,62231010)14th Five-Year Plan Civil Aerospace Technology Preliminary Research Project(D040405)the National Key Laboratory Foundation 2022-JCJQ-LB-006(Grant No.6142411212201).
文摘When learning the structure of a Bayesian network,the search space expands significantly as the network size and the number of nodes increase,leading to a noticeable decrease in algorithm efficiency.Traditional constraint-based methods typically rely on the results of conditional independence tests.However,excessive reliance on these test results can lead to a series of problems,including increased computational complexity and inaccurate results,especially when dealing with large-scale networks where performance bottlenecks are particularly evident.To overcome these challenges,we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected independence graphs.This method uses the Markov blanket discovery algorithm to refine the constraints in the initial search space,sets an appropriate constraint radius,thereby reducing the initial computational cost of the algorithm and effectively narrowing the initial solution range.Specifically,the method first determines the local neighborhood space to limit the search range,thereby reducing the number of possible graph structures that need to be considered.This process not only improves the accuracy of the search space constraints but also significantly reduces the number of conditional independence tests.By performing conditional independence tests within the local neighborhood of each node,the method avoids comprehensive tests across the entire network,greatly reducing computational complexity.At the same time,the setting of the constraint radius further improves computational efficiency while ensuring accuracy.Compared to other algorithms,this method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.Experimental simulation results show that,this method has significant advantages in obtaining the structure of undirected independence graphs,not only maintaining an accuracy of over 96%but also reducing the number of conditional independence tests by at least 50%.This significant performance improvement is due to the effective constraint on the search space and the fine control of computational costs.
基金Sheng Cao thanks the support from the National Natural Science Foundation of China(No.52204391)the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(Nos.STKJ202209021 and STKJ2023040)+1 种基金the Characteristic Innovation Project(Natural Science)for Regular University in Guangdong Province(No.2022KTSCX038)the Shantou University Research Foundation for Talents(No.NTF21013).
文摘This work investigated the gradient microstructure evolution and tensile property of LPBF fabricated 15-5 precipitation hardening stainless steel in post-process direct ageing(DA)and solution treating&ageing(STA).The varied microstructures for austenite and small-sized oxide inclusions at different sample heights in the as-built(AB)condition was generally preserved after DA treatment.However,austenite was almost disappeared,and oxide particle grew significantly after the STA treatment.As a result,the tensile property differences in sample top and bottom for AB and DA conditions did not occur in the STA samples.For the influence of post-process heat treatment,the STA condition had the highest yield strength due to the highest volume fraction of nano-sized Cu precipitates.However,the DA specimen had the highest ultimate tensile strength and elongation owing to the considerable amount of austenite phase and associated transformation induced plasticity effect.
基金National Natural Science Foundation of China (52072088, 52072089)Natural Science Foundation of Heilongjiang Province (LH2023E061)+1 种基金Scientific and Technological Innovation Leading Talent of Harbin Manufacturing (2022CXRCCG001)Fundamental Research Funds for the Central Universities (3072023CFJ1003)。
文摘Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.
基金funded by the National Natural Science Foundation of China(Grant No.52007084).
文摘Tantalum electrolytic capacitors have performance advantages of long life,high temperature stability,and high energy storage capacity and are essential micro-energy storage devices in many pieces of military mechatronic equipment,including penetration weapons.The latter are high-value ammunition used to strike strategic targets,and precision in their blast point is ensured through the use of penetration fuzes as control systems.However,the extreme dynamic impact that occurs during penetration causes a surge in the leakage current of tantalum capacitors,resulting in a loss of ignition energy,which can lead to ammunition half-burst or even sometimes misfire.To address the urgent need for a reliable design of tantalum capacitor for penetration fuzes,in this study,the maximum acceptable leakage current of a tantalum capacitor during impact is calculated,and two different types of tantalum capacitors are tested using a machete hammer.It is found that the leakage current of tantalum capacitors increases sharply under extreme impact,causing functional failure.Considering the piezoresistive effect of the tantalum capacitor dielectric and the changes in the contact area between the dielectric and the negative electrode under pressure,a force–electric simulation model at the microscale is established in COMSOL software.The simulation results align favorably with the experimental results,and it is anticipated that the leakage current of a tantalum capacitor will experience exponential growth with increasing pressure,ultimately culminating in complete failure according to this model.Finally,the morphological changes in tantalum capacitor sintered cells both without pressure and under pressure are characterized by electron microscopy.Broken particles of Ta–Ta_(2)O_(5)sintered molecular clusters are observed under pressure,together with cracks in the MnO_(2)negative base,proving that large stresses and strains are generated at the micrometer scale.
文摘An interdisciplinary-field research brings new elements in bridging the gravitational interaction with the Standard Model, by focusing on 3 factors. The involvement of inductive and capacitive-like phase shifts in the gravitational interaction, the exploration of swapping between parameters of time and space, and the provision of a way to handle imaginary terms. The existence of phase shifts in the gravitational interaction is documented via re-interpretation of older quantitative predictions, and is specifically linked to the Higgs field mechanism. Same as in electronics, a phase shift splits energy into real and imaginary coordinates. This allows to quantitatively treat inertia as an inductive-like potential, alongside the swapping of parameters of time and space. That also allows to treat the Bernoulli pressure in quantitative analogy to a magnetic potential, as well as barrier penetration in quantitative symmetry to the crossing of displacement-current through a capacitor. The findings shed light on how fields & forces, including reaction forces function, while the role of imaginary numbers is analyzed. Interaction of fields with quantum particles is discussed to involve a Fourier-series effect that results in energy quantization. The role of phase shifts becomes essential in bridging between wave nature and effects of relativity, and the Weinberg angle is explained to have the role of an inductive-like shift. The precise value of this angle is proposed to link to elementary particles’ properties like spin, or the value of quarks’ charge. Symmetries introduced allow to address the abundance of matter over antimatter in certain analogy to theory from electronics, to address galaxy rotation curves through an interaction involving negative energy, and more. The new concepts open up room for advancements in energy exploitation over interdisciplinary areas.
基金supported by the National Key Technology R&D Program of China(2011BAE22B01,2011BAE22B06)
文摘The influences of the hot extrusion process on the microstructure, corrosion behavior and corrosion mechanism for Mg-Y magnesium alloy were studied by means of the microstructure observation, weight loss test, electrochemical test and corrosion morphology test. The results showed that with increasing of the extrusion ratio, the shear flow line on the vertical section of the extruded alloy increased, the shear bands parallel lines became more clearly visible, and a large number of fine equiaxed grains distributed in parallel with the flow lines. The open circuit potential had a certain degree of improvement after extrusion, the open circuit potential increased with increment of extrusion ratio, and the corrosion potential of the vertical section was higher than that of the same alloy in the same compression ratio. The shift rate of the corrosion potential relatively became larger with increasing of the extrusion ratio, and the cathode corrosion current corresponding to the branch migration shifted to the positive direction. The high frequency capacitive arc increased with increment of the extrusion ratio, and the radius of capacitive arc of the vertical section was slightly larger than that of the transverse section. The corrosion morphologies of Mg-0.25 Y alloy were uniform corrosion, and the corrosion morphologies of Mg-(2.5, 5, 8 and 15) were the pitting corrosion and the small range, deep depth localized corrosion.
基金Project supported by the National Natural Science Foundation of China(No.20477020)the National Science Fund for Distinguished Young Scholars(No.20625722).
文摘Number concentration and distribution of airborne particles in the size range 5.6 to 560 nm diameter were measured in Beijing for a 15-d period in winter 2005. Dally average number concentrations of nucleation mode (5.6-20 um), Aitken mode (20-100 um), and accumulation mode (100-560 um) particles, and total particles were 17500, 32000, 4000, and 53500 cm^-3, respectively. Average particle size distribution was monomodal with a mode diameter of about 40 um at night and bimodal with mode diameters of about 10 and about 40 um during the daytime. New particle formation events, which were connected to diurnal variation of nucleation mode particles, were observed in more than half of the observation days. The events often started around 10:00-11:00 Chinese Standard Time (CST) and ended up after 3-4 h. Concentrations of Aitken and accumulation mode particles increased from midnight and reached their maxima at about 10:00 CST, and then decreased and became the lowest in the afternoon. Analysis of diurnal cycles in traffic volume and meteorological parameters revealed that the accumulation of the particles in Aitken and accumulation modes in the morning was influenced by formation of an inversion and increase in vehicle emission, and dispersion of such particles in the afternoon was associated with more effective vertical mixing and higher wind speed.
基金supported by the Major Science and Technology Programs for Water Pollution Control and Management of China(No.2012ZX07205-001)the National Science and Technology Support Program(No.2008BADC4B18)
文摘The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid(VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.
基金supported by the Natural Science Basic Research Program of Shaanxi(Program No.2022JQ-593)。
文摘In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.61612385in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016.
文摘Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.