The hydrogenation of SiCl_4 to SiHCl_3 was studied in a stirred bed reactor with CuCl catalyst.The properties of the CuCl catalysts and silicon particles before and after the reaction were characterized by SEM,XRD and...The hydrogenation of SiCl_4 to SiHCl_3 was studied in a stirred bed reactor with CuCl catalyst.The properties of the CuCl catalysts and silicon particles before and after the reaction were characterized by SEM,XRD and XPS.The XRD showed that the active component of Cu3Si was formed during the reaction,and the EDX proved the molar ratio of Cu and Si on the region of apertures.The valent of Cu was discussed by XPS before and after the hydrogen reaction.Then the effects of the reaction temperature,pressure,molar ratio of H2 to SiC l4,weight hourly space velocity(WHSV),and catalyst loading were studied.The results showed that the conversion rate of Si Cl4 was about 38%at WHSV of 190 Nm3/(t·h),temperature of 540℃,pressure of 1.8 MPa,catalyst loading of 0.9%(ω),and molar ratio of H2 to Si Cl4 1.7:1.Based on the experemental results,a reaction mechanism was proposed,which involved the continuous consumption of silicon(many apertures was showed on SEM image)and formation of new Cu3Si active component during the hydrogenation reaction.展开更多
Two kinds of metal chelates of rare earth elements reacted with tribrimoarsenazo formed under the condition of critic acid were observed by simultaneous technique of capillary electrophoresisphotothermal interference ...Two kinds of metal chelates of rare earth elements reacted with tribrimoarsenazo formed under the condition of critic acid were observed by simultaneous technique of capillary electrophoresisphotothermal interference spectrometry. The tendency of the conversion between these chelates as functions of the mole ratio of the reagent and the metal, pH value and the elapsing time was investigated. Kinetic equation of competitive chelating reaction between the TBA-La (Ⅲ) and La (Ⅲ) -critic acid were established. It was found that the competitive chelating reaction follows secondorder kinetics, for this second-order reaction, k=5.55 L·mol-1·S-1.展开更多
Study on the chemical properties of Ce (Ⅳ) complexes has been quite limited so far. We have first reported that Ce (Ⅳ) is reduced completely to Ce (Ⅲ) when (C5H6N)2CeCl6 reacts with C5Me5Li. In order to und...Study on the chemical properties of Ce (Ⅳ) complexes has been quite limited so far. We have first reported that Ce (Ⅳ) is reduced completely to Ce (Ⅲ) when (C5H6N)2CeCl6 reacts with C5Me5Li. In order to understand the characteristics of this type of reaction, we have studied the reaction of another Ce (Ⅳ) complex, (HP(C2H5)3)2CeCl6,展开更多
The increasing severity of air pollution necessitates more effective and sustained air filtration technology.Concurrently,the desire for more environmentally friendly,sustainable materials with better filtering perfor...The increasing severity of air pollution necessitates more effective and sustained air filtration technology.Concurrently,the desire for more environmentally friendly,sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes.This review presents lignocellulosic biocomposite(LigBioComp)membranes as an alternative to traditional synthetic membranes.It focuses on their materials,fabrication,and functionalization techniques while exploring challenges and proposing methods for resourceful utilization.Renowned for their abundance and renewable nature,lignocellulosic materials consist of cellulose,hemicellulose,and lignin.Various applications can benefit from their antibacterial properties,large surface area,and remarkable mechanical strength.LigBioComp membranes are fabricated through casting,electrospinning,and freeze-drying,with advancements in fabrication techniques enhancing their performance and applicability.It is suggested to use solvent-free or low-solvent techniques such as Layer-by-Layer assembly to minimize environmental impact.Freeze-drying and electrospinning with green solvents can be used for achieving specific membrane properties,though energy consumption should be considered.Apply dry-wet spinning and solvent casting processes selectively.Functional groups,including carboxyl,hydroxyl,or amino groups,can significantly improve the membrane’s capacity to capture particulate matter.Chemical etching or the precise deposition of nanoparticles can further optimize pore size and distribution.The choice of chemicals and methods is critical in functionalization,with silane coupling agents,polyethyleneimine,and polydopamine.Future research should prioritize refining fabrication methods,advancing functionalization strategies,and conducting performance and recyclability assessments on hybrid and composite materials.This will enhance integrated systems and contribute to the development of smart filters.展开更多
FeTiOx has been recognized as an environmental-friendly and cost-effective catalyst for selective catalytic reduction(SCR)of NOx with NH3.Aimed at further improving the low-temperature DeNOx efficiency of FeTiOx catal...FeTiOx has been recognized as an environmental-friendly and cost-effective catalyst for selective catalytic reduction(SCR)of NOx with NH3.Aimed at further improving the low-temperature DeNOx efficiency of FeTiOx catalyst,a simple strategy of CeO_(2) doping was proposed.The low-temperature(<250°C)NH3-SCR activity of FeTiOx catalyst could be dramatically enhanced by CeO2 doping,and the optimal composition of the catalyst was confirmed as FeCe_(0.2)TiOx,which performed a NOx conversion of 90%at ca.200°C.According to X-ray diffraction(XRD),Raman spectra and X-ray absorption fine structure spectroscopy(XAFS)analysis,FeCe_(0.2)TiOx showed low crystallinity,with Fe and Ce species well mixed with each other.Based on the fitting results of extended X-ray absorption fine structure(EXAFS),a unique Ce-O-Fe structure was formed in FeCe_(0.2)TiOx catalyst.The well improved specific surface area and the newly formed Ce-O-Fe structure dramatically contributed to the improvement of the redox property of FeCe_(0.2)TiOx catalyst,which was well confirmed by H2-temperature-programmed reduction(H2-TPR)and in situ XAFS experiments.Such enhanced redox capability could benefit the activation of NO and NH_(3) at low temperatures for NOx removal.The detailed reaction mechanism study further suggested that the facile oxidative dehydrogenation of NH_(3) to highly reactive-NH_(2) played a key role in enhancing the low-temperature NH_(3)-SCR performance of FeCe_(0.2)TiOx catalyst.展开更多
Pretreatment of the carrier for supported catalysts can effectively improve the strong metal-support interaction(SMSI)and increase the dispersion of precious metals,which are critical to many important catalytic react...Pretreatment of the carrier for supported catalysts can effectively improve the strong metal-support interaction(SMSI)and increase the dispersion of precious metals,which are critical to many important catalytic reactions.In this work,we tuned SMSI on Pd/TiO_(2)catalysts through inducing surface defects of TiO_(2)by pretreated with different atmospheres(H_(2)/N_(2),N_(2),O_(2)/N_(2))at the high temperature(800℃).Multiple characterization results illustrated that surface defects anchored Pd species and thus enhanced their dispersion.During reduction,Ti^(3+)species formed and transferred onto the metallic Pd species and then induced SMSI,which effectively stabilize Pd species in the metallic state.The stronger MSI,the more stability of Pd species.As a case,Pd/TiO_(2)–800H_(2),with strongest MSI,displayed the best HCHO oxidation performance at low temperature(10℃).展开更多
Selective hydrogenation of biomass-derived maleic anhydride(MAH)to succinic anhydride(SA)is valuable but remains a challenge due to the complicated reaction network.We here report that single Pt atoms decorated onto t...Selective hydrogenation of biomass-derived maleic anhydride(MAH)to succinic anhydride(SA)is valuable but remains a challenge due to the complicated reaction network.We here report that single Pt atoms decorated onto the edges of two-dimensional(2D)1Tphase MoS_(2)(Pt1/1T-MOS_(2)SAC)as a proof-of-concept catalyst can efficiently convert biomass-derived MAH to SA with 100%conversion and 100%selectivity under mild conditions.The kinetic data and characterization results suggest that the catalytic performance of the edge-anchored Pt1/1T-MoS_(2)SAC originates from the facile H_(2)dissociation induced by the electron-deficient Pt1atoms and the pocket-like configuration of Pt1active site confines the adsorption configuration of MAH by the steric effect.The strategy of fabricating edge-confined catalysts offers a new direction to design novel SACs for biomass-derived transformations.展开更多
Rh single atom catalysts(SACs)have been insensitively investigated recently due to the maximum utilization efficiency of Rh,one of the most expensive precious metals.Although great efforts have been made in the develo...Rh single atom catalysts(SACs)have been insensitively investigated recently due to the maximum utilization efficiency of Rh,one of the most expensive precious metals.Although great efforts have been made in the development and application of Rh SACs,there are few reports on the precise control of the local coordination environment of Rh single sites on CeO_(2) and their catalytic performance for N_(2)O decomposition.Herein,Rh/CeO_(2) catalysts with different Rh-O coordination numbers(CNs)were successfully prepared using different CeO_(2) supports and a simple incipient wetness impregnation(IWI)method.It is observed that the Rh/CeO_(2) catalyst with slightly higher CN of Rh-O(Rh/CeO_(2)-H)prepared from CeO_(2) shows much higher N_(2)O decomposition activity than the catalyst with lower CN of Rh-O(Rh/CeO_(2)-L)obtained from Ce(OH)_(x).The Rh species within Rh/CeO_(2)-H are found to be more reactive than those within Rh/CeO_(2)-L,which can better facilitate the O_(2)desorption once formed during N_(2)O deco mposition.In additio n,more surface oxygen vacancies are present on Rh/CeO_(2)-H than on Rh/CeO_(2)-L,well explaining the superior N_(2)O adsorption and activation capability on the former catalyst.It is concluded that more abundant oxygen vacancies and reactive Rh single atom sites with slightly higher CN of Rh-O and significantly higher reducibility altogether contribute to the superior N_(2)O decomposition activity on the Rh/CeO_(2)-H catalyst.展开更多
Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of...Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of photothermal catalytic removal of volatile organic compounds(VOCs)by nano-catalysts in recent years is systematically reviewed.First,the fundamentals of photothermal catalysis and the fabrication of catalysts are described,and the design strategy of optimizing photothermal catalysis performance is proposed.Second,the performance for VOC degradation with photothermal catalysis is evaluated and compared for the batch and continuous systems.Particularly,the catalytic mechanism of VOC oxidation is systematically introduced based on experimental and theoretical study.Finally,the future limitations and challenges have been discussed,and potential research directions and priorities are highlighted.A broad view of recent photothermal catalyst fabrication,applications,challenges,and prospects can be systemically provided by this review.展开更多
Electrochemical reduction of CO_(2)to value-added chemicals using renewable electricity provides a promising strategy to achieve sustainable fuel production and carbon neutrality.Along with the development of electroc...Electrochemical reduction of CO_(2)to value-added chemicals using renewable electricity provides a promising strategy to achieve sustainable fuel production and carbon neutrality.Along with the development of electrocatalysts,fow cells with gas-diffusion electrodes(GDEs)have been used to reach commercially viable current densities for CO_(2)electrolysis,while the local environment and CO_(2)mass transport in the electrodes remain to be elucidated.In this review article,we highlight some insights into the microenvironment in the catalyst layer for CO_(2)electrolysis,including typical mass transport models for CO_(2)reduction in H-type cells and GDE fow cells,the effect of a hydrophobic microenvironment on CO_(2)mass transport and catalytic performance,and the formation of a gas/liquid balance and solid–liquid–gas interfaces for CO_(2)electrolysis.The insights and discussions in this article can provide important guidelines on the design of catalysts,electrodes,and electrolyzers for CO_(2)electrolysis,as well as other gas-involving electrocatalytic reactions.展开更多
The utilization of fossil fuels has brought unprecedented prosperity and development to human society,but also caused environmental pollution and global warming triggered by excess greenhouse gases emission.For one th...The utilization of fossil fuels has brought unprecedented prosperity and development to human society,but also caused environmental pollution and global warming triggered by excess greenhouse gases emission.For one thing,the excess emission of carbon dioxide(CO_(2)),which has a negative impact on global temperature and ocean acidity,needs to be controlled.For another,the depletion of fossil fuels will eventually force people to seek alternative carbon sources to maintain a sustainable economy.Thus,using renewable energy to convert CO_(2) and biomass into value-added chemicals and fuels is a promising method to overcome urgent problems.The hy-drogenation of CO_(2) is very important to mitigate the greenhouse effect caused by CO_(2),while biomass conversion can produce alternative renewable biofuels and green chemicals.As a kind of promising catalyst,heterogeneous single-atom catalyst(SAC)has received extensive attention in the past decades.SACs combine the advantages of homogeneous catalysts with uniform active sites and heterogeneous catalysts that are easily separable.In this review,we will give a comprehensive overview of the latest progress in CO_(2) selective hydrogenation and biomass conversion via SACs.展开更多
文摘The hydrogenation of SiCl_4 to SiHCl_3 was studied in a stirred bed reactor with CuCl catalyst.The properties of the CuCl catalysts and silicon particles before and after the reaction were characterized by SEM,XRD and XPS.The XRD showed that the active component of Cu3Si was formed during the reaction,and the EDX proved the molar ratio of Cu and Si on the region of apertures.The valent of Cu was discussed by XPS before and after the hydrogen reaction.Then the effects of the reaction temperature,pressure,molar ratio of H2 to SiC l4,weight hourly space velocity(WHSV),and catalyst loading were studied.The results showed that the conversion rate of Si Cl4 was about 38%at WHSV of 190 Nm3/(t·h),temperature of 540℃,pressure of 1.8 MPa,catalyst loading of 0.9%(ω),and molar ratio of H2 to Si Cl4 1.7:1.Based on the experemental results,a reaction mechanism was proposed,which involved the continuous consumption of silicon(many apertures was showed on SEM image)and formation of new Cu3Si active component during the hydrogenation reaction.
基金Supported by the National Natural Science Foundation of China (No. 20005005) Chengguang Project of Wuhan, and Visiting Scholar Foundation of Key Lab in University.
文摘Two kinds of metal chelates of rare earth elements reacted with tribrimoarsenazo formed under the condition of critic acid were observed by simultaneous technique of capillary electrophoresisphotothermal interference spectrometry. The tendency of the conversion between these chelates as functions of the mole ratio of the reagent and the metal, pH value and the elapsing time was investigated. Kinetic equation of competitive chelating reaction between the TBA-La (Ⅲ) and La (Ⅲ) -critic acid were established. It was found that the competitive chelating reaction follows secondorder kinetics, for this second-order reaction, k=5.55 L·mol-1·S-1.
文摘Study on the chemical properties of Ce (Ⅳ) complexes has been quite limited so far. We have first reported that Ce (Ⅳ) is reduced completely to Ce (Ⅲ) when (C5H6N)2CeCl6 reacts with C5Me5Li. In order to understand the characteristics of this type of reaction, we have studied the reaction of another Ce (Ⅳ) complex, (HP(C2H5)3)2CeCl6,
基金funded by the Universiti Teknologi Malaysia(UTM)through research Grant Number:06E05.
文摘The increasing severity of air pollution necessitates more effective and sustained air filtration technology.Concurrently,the desire for more environmentally friendly,sustainable materials with better filtering performance and less environmental impact drives the move away from conventional synthetic membranes.This review presents lignocellulosic biocomposite(LigBioComp)membranes as an alternative to traditional synthetic membranes.It focuses on their materials,fabrication,and functionalization techniques while exploring challenges and proposing methods for resourceful utilization.Renowned for their abundance and renewable nature,lignocellulosic materials consist of cellulose,hemicellulose,and lignin.Various applications can benefit from their antibacterial properties,large surface area,and remarkable mechanical strength.LigBioComp membranes are fabricated through casting,electrospinning,and freeze-drying,with advancements in fabrication techniques enhancing their performance and applicability.It is suggested to use solvent-free or low-solvent techniques such as Layer-by-Layer assembly to minimize environmental impact.Freeze-drying and electrospinning with green solvents can be used for achieving specific membrane properties,though energy consumption should be considered.Apply dry-wet spinning and solvent casting processes selectively.Functional groups,including carboxyl,hydroxyl,or amino groups,can significantly improve the membrane’s capacity to capture particulate matter.Chemical etching or the precise deposition of nanoparticles can further optimize pore size and distribution.The choice of chemicals and methods is critical in functionalization,with silane coupling agents,polyethyleneimine,and polydopamine.Future research should prioritize refining fabrication methods,advancing functionalization strategies,and conducting performance and recyclability assessments on hybrid and composite materials.This will enhance integrated systems and contribute to the development of smart filters.
基金support from the Key Project of National Natural Science Foundation of China(No.21637005)Accelerator Research Organization(KEK)(Japan)for the generous help in XAS experiments conducted at Photon Factory,KEK,Japan(No.2012G537).
文摘FeTiOx has been recognized as an environmental-friendly and cost-effective catalyst for selective catalytic reduction(SCR)of NOx with NH3.Aimed at further improving the low-temperature DeNOx efficiency of FeTiOx catalyst,a simple strategy of CeO_(2) doping was proposed.The low-temperature(<250°C)NH3-SCR activity of FeTiOx catalyst could be dramatically enhanced by CeO2 doping,and the optimal composition of the catalyst was confirmed as FeCe_(0.2)TiOx,which performed a NOx conversion of 90%at ca.200°C.According to X-ray diffraction(XRD),Raman spectra and X-ray absorption fine structure spectroscopy(XAFS)analysis,FeCe_(0.2)TiOx showed low crystallinity,with Fe and Ce species well mixed with each other.Based on the fitting results of extended X-ray absorption fine structure(EXAFS),a unique Ce-O-Fe structure was formed in FeCe_(0.2)TiOx catalyst.The well improved specific surface area and the newly formed Ce-O-Fe structure dramatically contributed to the improvement of the redox property of FeCe_(0.2)TiOx catalyst,which was well confirmed by H2-temperature-programmed reduction(H2-TPR)and in situ XAFS experiments.Such enhanced redox capability could benefit the activation of NO and NH_(3) at low temperatures for NOx removal.The detailed reaction mechanism study further suggested that the facile oxidative dehydrogenation of NH_(3) to highly reactive-NH_(2) played a key role in enhancing the low-temperature NH_(3)-SCR performance of FeCe_(0.2)TiOx catalyst.
基金supported by the Youth Innovation Promotion Association,CAS(No.2020310)the Science and Technology Planning Project of Xiamen City(No.3502Z20191021)the Science and Technology Innovation“2025”major program in Ningbo(No.2022Z028)。
文摘Pretreatment of the carrier for supported catalysts can effectively improve the strong metal-support interaction(SMSI)and increase the dispersion of precious metals,which are critical to many important catalytic reactions.In this work,we tuned SMSI on Pd/TiO_(2)catalysts through inducing surface defects of TiO_(2)by pretreated with different atmospheres(H_(2)/N_(2),N_(2),O_(2)/N_(2))at the high temperature(800℃).Multiple characterization results illustrated that surface defects anchored Pd species and thus enhanced their dispersion.During reduction,Ti^(3+)species formed and transferred onto the metallic Pd species and then induced SMSI,which effectively stabilize Pd species in the metallic state.The stronger MSI,the more stability of Pd species.As a case,Pd/TiO_(2)–800H_(2),with strongest MSI,displayed the best HCHO oxidation performance at low temperature(10℃).
基金financially supported by the National Natural Science Foundation of China(Nos.21908079,21872145 and U21A20326)Jiangsu Specially-Appointed Professor Fund(No.1046010241211400)+4 种基金Natural Science Foundation of Jiangsu Province(Nos.BK20211239,BK20221541 and BK20201345)the State Key Laboratory of Fine ChemicalsDalian University of Technology(No.KF2005)Dalian Institute of Chemical Physics(No.DICP 1201943)the Central Laboratory,School of Chemical and Material Engineering,Jiangnan University。
文摘Selective hydrogenation of biomass-derived maleic anhydride(MAH)to succinic anhydride(SA)is valuable but remains a challenge due to the complicated reaction network.We here report that single Pt atoms decorated onto the edges of two-dimensional(2D)1Tphase MoS_(2)(Pt1/1T-MOS_(2)SAC)as a proof-of-concept catalyst can efficiently convert biomass-derived MAH to SA with 100%conversion and 100%selectivity under mild conditions.The kinetic data and characterization results suggest that the catalytic performance of the edge-anchored Pt1/1T-MoS_(2)SAC originates from the facile H_(2)dissociation induced by the electron-deficient Pt1atoms and the pocket-like configuration of Pt1active site confines the adsorption configuration of MAH by the steric effect.The strategy of fabricating edge-confined catalysts offers a new direction to design novel SACs for biomass-derived transformations.
基金Project supported by the Startup Fund(F.L.)from the University of Central Florida(UCF)National Science Foundation grants(CHE-1955343,DMR-1920050).
文摘Rh single atom catalysts(SACs)have been insensitively investigated recently due to the maximum utilization efficiency of Rh,one of the most expensive precious metals.Although great efforts have been made in the development and application of Rh SACs,there are few reports on the precise control of the local coordination environment of Rh single sites on CeO_(2) and their catalytic performance for N_(2)O decomposition.Herein,Rh/CeO_(2) catalysts with different Rh-O coordination numbers(CNs)were successfully prepared using different CeO_(2) supports and a simple incipient wetness impregnation(IWI)method.It is observed that the Rh/CeO_(2) catalyst with slightly higher CN of Rh-O(Rh/CeO_(2)-H)prepared from CeO_(2) shows much higher N_(2)O decomposition activity than the catalyst with lower CN of Rh-O(Rh/CeO_(2)-L)obtained from Ce(OH)_(x).The Rh species within Rh/CeO_(2)-H are found to be more reactive than those within Rh/CeO_(2)-L,which can better facilitate the O_(2)desorption once formed during N_(2)O deco mposition.In additio n,more surface oxygen vacancies are present on Rh/CeO_(2)-H than on Rh/CeO_(2)-L,well explaining the superior N_(2)O adsorption and activation capability on the former catalyst.It is concluded that more abundant oxygen vacancies and reactive Rh single atom sites with slightly higher CN of Rh-O and significantly higher reducibility altogether contribute to the superior N_(2)O decomposition activity on the Rh/CeO_(2)-H catalyst.
基金sponsored financially by the National Natural Science Foundation of China (No.21906104 and No.12175145)the Shanghai Rising-Star Program (21QA1406600).
文摘Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of photothermal catalytic removal of volatile organic compounds(VOCs)by nano-catalysts in recent years is systematically reviewed.First,the fundamentals of photothermal catalysis and the fabrication of catalysts are described,and the design strategy of optimizing photothermal catalysis performance is proposed.Second,the performance for VOC degradation with photothermal catalysis is evaluated and compared for the batch and continuous systems.Particularly,the catalytic mechanism of VOC oxidation is systematically introduced based on experimental and theoretical study.Finally,the future limitations and challenges have been discussed,and potential research directions and priorities are highlighted.A broad view of recent photothermal catalyst fabrication,applications,challenges,and prospects can be systemically provided by this review.
基金the support of a Sloan Research Fellowship from the Alfred P.Sloan Foundation(FG-2019-11694)。
文摘Electrochemical reduction of CO_(2)to value-added chemicals using renewable electricity provides a promising strategy to achieve sustainable fuel production and carbon neutrality.Along with the development of electrocatalysts,fow cells with gas-diffusion electrodes(GDEs)have been used to reach commercially viable current densities for CO_(2)electrolysis,while the local environment and CO_(2)mass transport in the electrodes remain to be elucidated.In this review article,we highlight some insights into the microenvironment in the catalyst layer for CO_(2)electrolysis,including typical mass transport models for CO_(2)reduction in H-type cells and GDE fow cells,the effect of a hydrophobic microenvironment on CO_(2)mass transport and catalytic performance,and the formation of a gas/liquid balance and solid–liquid–gas interfaces for CO_(2)electrolysis.The insights and discussions in this article can provide important guidelines on the design of catalysts,electrodes,and electrolyzers for CO_(2)electrolysis,as well as other gas-involving electrocatalytic reactions.
基金supported financially by the National Key R&D Program of China(2021YFB3501900)National Natural Sci-ence Foundation of China(21908079,U21A20326,22202105,22072118,22121001)+3 种基金Jiangsu Specially-Appointed Professor(1046010241211400)Natural Science Foundation of Jiangsu Province(BK20211239,BK20210608)National High-Level Young Talents Program,the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF2005)Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality(BK20220023).
文摘The utilization of fossil fuels has brought unprecedented prosperity and development to human society,but also caused environmental pollution and global warming triggered by excess greenhouse gases emission.For one thing,the excess emission of carbon dioxide(CO_(2)),which has a negative impact on global temperature and ocean acidity,needs to be controlled.For another,the depletion of fossil fuels will eventually force people to seek alternative carbon sources to maintain a sustainable economy.Thus,using renewable energy to convert CO_(2) and biomass into value-added chemicals and fuels is a promising method to overcome urgent problems.The hy-drogenation of CO_(2) is very important to mitigate the greenhouse effect caused by CO_(2),while biomass conversion can produce alternative renewable biofuels and green chemicals.As a kind of promising catalyst,heterogeneous single-atom catalyst(SAC)has received extensive attention in the past decades.SACs combine the advantages of homogeneous catalysts with uniform active sites and heterogeneous catalysts that are easily separable.In this review,we will give a comprehensive overview of the latest progress in CO_(2) selective hydrogenation and biomass conversion via SACs.