Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord....Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of ...Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.展开更多
BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term...BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term PPI use and higher risks for various adverse health outcomes,including greater mortality.AIM To investigate the association between PPI use and all-cause mortality among cancer patients by a comprehensive analysis after adjustment for various confounders and a robust methodological approach to minimize bias.METHODS This retrospective cohort study used data from the TriNetX research network,with electronic health records from multiple healthcare organizations.The study employed a new-user,active comparator design,which compared newly treated PPI users with non-users and newly treated histamine2 receptor antagonists(H2RA)users among adult cancer patients.Newly prescribed PPIs(esomeprazole,lansoprazole,omeprazole,pantoprazole,or rabeprazole)users were compared to non-users or newly prescribed H2RAs(cimetidine,famotidine,nizatidine,or ranitidine)users.The primary outcome was all-cause mortality.Each patient in the main group was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects.Multivariable Cox regression models were used to estimate hazard ratios(HRs)and 95% confidence interval(CI).RESULTS During the follow-up period(median 5.4±1.8 years for PPI users and 6.5±1.0 years for non-users),PPI users demonstrated a higher all-cause mortality rate than non-users after 1 year,2 years,and at the end of follow up(HRs:2.34-2.72).Compared with H2RA users,PPI users demonstrated a higher rate of all-cause mortality HR:1.51(95%CI:1.41-1.69).Similar results were observed across sensitivity analyses by excluding deaths from the first 9 months and 1-year post-exposure,confirming the robustness of these findings.In a sensitivity analysis,we analyzed all-cause mortality outcomes between former PPI users and individuals who have never used PPIs,providing insights into the long-term effects of past PPI use.In addition,at 1-year follow-up,the analysis revealed a significant difference in mortality rates between former PPI users and non-users(HR:1.84;95%CI:1.82-1.96).CONCLUSION PPI use among cancer patients was associated with a higher risk of all-cause mortality compared to non-users or H2RA users.These findings emphasize the need for cautious use of PPIs in cancer patients and suggest that alternative treatments should be considered when clinically feasible.However,further studies are needed to corroborate our findings,given the significant adverse outcomes in cancer patients.展开更多
In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted co...In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted combination,the non-uniform rational B-spline(NURBS)functions are employed as basis functions.Moreover,the unbounded and artificial domains,defined in the PML method,are contained in a single patch domain.Based on the proposed scheme,the approximation of the geometry problem is set in a new scheme in which the PML’s absorbing and attenuation properties and the description of traveling waves can be represented.This includes a higher continuity and smoother approximation of the computed domain.As high-order NURBS basis functions are non-interpolatory,a penalty method is present to apply a time-dependent displacement load.The performance of the NURBS-based PML is analyzed through numerical examples for 1D and 2D domains,considering homogeneous and heterogeneous media.Further,we verify the long-time numerical stability of the present method.The developed method can be used to simulate hypothetical stratified domains commonly encountered in soil-structure interaction analyses.展开更多
Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,w...Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,we compare these moral reorientation processes to contextualize two different moral programmes of the scientific reform movement and their sociopolitical conditions.We argue that such an explication of moral programmes is vital to build legitimacy and reflect on value-prioritization.While epistemic programmes are foregrounded,moral programmes also play a crucial role in shaping science,and different moral programmes offer different promises for the sustained support of credible,reliable,fair and equitable science.We discuss the virtue and equity programmes,and through interrogating both programmes in relation to the Reformation,we display the relevance of sociopolitical contexts to how key values operate in science and generate orders of worth.These insights aim to stimulate debate about the conditions for opting for either of these moral programmes.In our view,not all moral programmes offer equal promise for the sustained support of credible,equitable and fair science.展开更多
Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temper...Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temperatures.This study investigates the DRX mechanisms in AZWX3100 magnesium alloy under plane strain compression at 200℃.Microstructural analysis revealed necklace-type DRX accompanied by evidence of local grain boundary bulging.Additionally,ribbons of recrystallized grains were observed withinfine deformation bands,aligned with theoretical pyramidal I and II slip traces derived from the matrix.The distribution of local misorientation within the deformed microstructure demonstrated a clear association between deformation bands and localized strain.Dislocation analysis of lamellar specimens extracted from two pyramidal slip bands revealed<c+a>dislocations,indicating a connection between<c+a>slip activation and the formation of deformation bands.Crystal plasticity simulations suggest that the orientation of deformation bands is responsible for the unique recrystallization texture of the DRX grains within these bands.The texture characteristics imply a progressive,glide-induced DRX mechanism.A fundamental understanding of the role of deformation bands in texture modification can facilitate future alloy and process design.展开更多
BACKGROUND:As disasters intensify and professional deficits persist,civil protection is reliant on medical volunteers.With limited physician availability,telemedicine is promising.No system currently empowers lower-qu...BACKGROUND:As disasters intensify and professional deficits persist,civil protection is reliant on medical volunteers.With limited physician availability,telemedicine is promising.No system currently empowers lower-qualified paramedics for physician-delegated telemedicine.Existing telemedicine technology unfits for civil protection.This study aimed to evaluate a modified system at a music festival to simulate disaster situations.METHODS:A tablet-based telemedicine system,integrating vital sign monitoring,was deployed at the "Summerjam" music festival characterized by various medical emergencies.A physician could be contacted via telemedicine or requested onsite.Medical feasibility was rated by patient condition changes,with National Advisory Committee of Aeronautics(NACA) score and Primary Ranking for Initial Orientation in the Rescue service(PRIOR) algorithm for triaging.Technical feasibility was assessed by connection stability,communication,and vital sign transmission.RESULTS:Of 404 treatments,34(8.4%) were performed using telemedicine,49(12.1%) were carried out with a physician onsite.Telemedicine treatments accounted for 40.9% of all treatment in which a physician was involved.Patient conditions varied up to NACA III(moderate disturbance).A variety of internal medical(76.5%) and surgical(23.5%) conditions were addressed,some of which required invasive measures or application of medication.No patients experienced a deterioration in their condition.Despite technical difficulties,treatment was not significantly impacted,confirming technical feasibility.CONCLUSION:The study shows that lower-qualified paramedics can effectively use telemedicine for physician-delegated treatment,suggesting potential applicability to civil protection.Nonetheless,further system robustness improvements and research are needed.展开更多
The global demand for in vitro respiratory airway models has surged due to the coronavirus disease 2019(COVID-19)pandemic.Current state-of-the-art models use polymer membranes to separate epithelial cells from other c...The global demand for in vitro respiratory airway models has surged due to the coronavirus disease 2019(COVID-19)pandemic.Current state-of-the-art models use polymer membranes to separate epithelial cells from other cell types,creating a nonphysiological barrier.In this study,we applied three-dimensional(3D)printing and bioprinting to develop an in vitro model where endothelial and epithelial cells were in direct contact,mimicking their natural arrangement.This proof-ofconcept model includes a culture chamber,with an endothelial bioink printed and perfused through an epithelial channel.In silico simulations of the air velocity within the channel revealed shear stress values ranging from 0.13 to 0.39 Pa,aligning with the desired in vivo shear stress observed in the bronchi regions(0.1–0.4 Pa).Biomechanical movements during resting breathing were mimicked by incorporating a textile mesh positioned away from the cell–cell interface.The epithelial channel demonstrated a capacity for compression and expansion of up to−14.7%and+6.4%,respectively.Microscopic images showed that the epithelial cells formed a uniform monolayer within the lumen of the channel close to the bioprinted endothelial cells.Our novel model offers a valuable tool for future research into respiratory diseases and potential treatments under conditions closely mimicking those in the lung.展开更多
Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of constru...Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of construction.In this study,indoor freezethaw cycle(FTC)tests on sandstone were conducted to analyze the mass change rate,density change rate,longitudinal wave velocity change rate,microstructure change and mechanical properties of sandstone after FTC.A microscopic FT damage variable reflecting the FT damage was defined based on the changes of rock porosity before and after the FTC,enabling the derivation of the total damage variable under the coupled action of FTC and mechanical loading.A damage evolution equation and a microscopic damage constitutive model for rock under coupled FTC and confining pressure were established by using Lemaitre’s strain equivalence principle,the theory of continuous damage mechanics,and the assumption that the failure of rock micro-units follows the SMP criterion.The rationality and accuracy of the model were verified using triaxial compression test data for FT-damaged rock.The results show that both macroand micro-mechanical properties of sandstone are degraded under the action of FTC,resulting in significant damage.The developed microscopic damage constitutive model can reflect the stress-strain characteristics of the whole process of FT rock triaxial compression,with excellent agreement observed between experimental and theoretical curves.This validates the reliability of the model and the methodology for determining its parameters.Additionally,defining the microscopic FT damage variable based on rock porosity changes is demonstrated to be a feasible and highly accurate approach to reflect rock FT damage degree.This model expands the damage model for rock under the coupling effect of FTC and confining pressure,further illuminating the damage mechanism and failure law in such environments.The findings provide references for the construction of rock mass engineering in cold regions.展开更多
A recent meta-analysis has suggested a 5-HTR1A promoter variant may predict antidepressant response.The present review comments on the claims made in view of sensitivity issues and issues pertaining to genetic exposur...A recent meta-analysis has suggested a 5-HTR1A promoter variant may predict antidepressant response.The present review comments on the claims made in view of sensitivity issues and issues pertaining to genetic exposure.We also alert to errors in the original data that had been carried over.Specifically,primers meant to amplify the HTR1A gene aligned to the BDNF gene sequence.Alleles had been confounded owing to DNA strand ambiguities and demographic information proved inaccurate.In the light of these findings,adherence to PRISMA guidelines and use of the Newcastle-Ottawa Scale did not safeguard against bias.More after action reviews are encouraged to identify factors likely to interfere with estimates of genetic risk in large data sets.These may result from pooling of ethnic groups,the use of binary data or other formats that are not human-readable,the introduction of surrogate identifiers and a failure to reverseengineer previously published experimental protocols.Unless the above challenges are met,sequence variants are unlikely to inform personalized medicine strategies in psychiatry.展开更多
Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB s...Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB segregation at highly symmetric GBs in Mg alloys,often failing to capture the diversity of local atomic environments and segregation energies,resulting in inaccurate structure-property predictions.This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures.The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors.We found that segregation energy and vibrational free energy follow skew-normal distributions,with hydrostatic stress,an indicator of excess free volume,emerging as an important factor influencing segregation tendency.The local atomic environment's flexibility,quantified by flexibility volume,is also crucial in predicting GB segregation.Comparing the grain boundary solute concentrations calculated via the Langmuir-Mc Lean isotherm with experimental data,we identified a pronounced segregation tendency for Nd,highlighting its potential for GB engineering in Mg alloys.This work demonstrates the powerful synergy of atomistic simulations and machine learning,paving the way for designing advanced lightweight Mg alloys with tailored properties.展开更多
The photocatalytic reduction of CO_(2)presents a promising avenue for carbon fuel conversion.However,the efficiency of charge utilization remains a critical barrier to industrial applications.In this study,we introduc...The photocatalytic reduction of CO_(2)presents a promising avenue for carbon fuel conversion.However,the efficiency of charge utilization remains a critical barrier to industrial applications.In this study,we introduce a tandem design of Bi_(2)WO_(6)-BiOCl with an atomically matched interface,achieving highly efficient photoreduction of CO_(2)to CO.By incorporating WO_(4)^(2-)ions and tuning coordination environment,the(110)facet of BiOCl was in-situ grown on the(200)facet of Bi_(2)WO_(6).Compared to single phases and ball-milling samples,Bi_(2)WO_(6)-BiOCl exhibits a remarkable CO yield of 68.03μmol g^(-1)h^(-1)with a selectivity of 98%.Atomic visualization and coordination analysis confirm the formation of a coherent interface that facilitates charge migration for efficient electron transport.Density functional theory(DFT)calculations and in-situ Fourier transform infrared(FTIR)spectroscopy provide insights into the intrinsic active sites and reaction mechanisms.The proposed lattice engineering strategies offer a new paradigm for the rational design of heterostructures beyond traditional band alignment at the atomic scale.展开更多
文摘Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金funded by the Project of Yunnan Province’s Xingdian Talents Support Program(yfgrc202437)the Project of the International Cooperation Science Program of National Natural Science Foundation of China(42361144885).
文摘Phosphorus(P)poses a global challenge to the environment and human health due to its natural association with heavy metals.Sustainable use of P is crucial to ensure food security for future generations.An analysis of the 150 phosphate fertilizers stored at the Institute for Crop and Soil Science in Germany has been conducted,supplemented by previously published data.The elements Cd,Bi,U,Cr,Zn,Tl,As,B,Sb,Ni,and Se are found in higher concentrations in sedimentary derived phosphates compared to igneous derived phosphates.Mineral fertilizers contain more than ten times the amount of U,Cd,B,and As compared to farmyard manure.Principal component analyses(PCA)indicate that U,Cd,Be,and Cr are primarily present in sedimentary derived phosphates and their concentrations are 2 to 10 times higher than those in igneous derived phosphates.Regarding heavy metal contamination,over 1000 potential combinations were identified;36% of these were significant but weak(>0.1).It is estimated that approximately 707 t of uranium enter farmland annually through the application of mineral phosphate fertilizers in European countries.This contribution addresses environmental issues related to the utilization of rock phosphate as well as alternative production methods for cleaner and safer phosphate fertilizers while presenting a roadmap with measures for mitigation.
文摘BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term PPI use and higher risks for various adverse health outcomes,including greater mortality.AIM To investigate the association between PPI use and all-cause mortality among cancer patients by a comprehensive analysis after adjustment for various confounders and a robust methodological approach to minimize bias.METHODS This retrospective cohort study used data from the TriNetX research network,with electronic health records from multiple healthcare organizations.The study employed a new-user,active comparator design,which compared newly treated PPI users with non-users and newly treated histamine2 receptor antagonists(H2RA)users among adult cancer patients.Newly prescribed PPIs(esomeprazole,lansoprazole,omeprazole,pantoprazole,or rabeprazole)users were compared to non-users or newly prescribed H2RAs(cimetidine,famotidine,nizatidine,or ranitidine)users.The primary outcome was all-cause mortality.Each patient in the main group was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects.Multivariable Cox regression models were used to estimate hazard ratios(HRs)and 95% confidence interval(CI).RESULTS During the follow-up period(median 5.4±1.8 years for PPI users and 6.5±1.0 years for non-users),PPI users demonstrated a higher all-cause mortality rate than non-users after 1 year,2 years,and at the end of follow up(HRs:2.34-2.72).Compared with H2RA users,PPI users demonstrated a higher rate of all-cause mortality HR:1.51(95%CI:1.41-1.69).Similar results were observed across sensitivity analyses by excluding deaths from the first 9 months and 1-year post-exposure,confirming the robustness of these findings.In a sensitivity analysis,we analyzed all-cause mortality outcomes between former PPI users and individuals who have never used PPIs,providing insights into the long-term effects of past PPI use.In addition,at 1-year follow-up,the analysis revealed a significant difference in mortality rates between former PPI users and non-users(HR:1.84;95%CI:1.82-1.96).CONCLUSION PPI use among cancer patients was associated with a higher risk of all-cause mortality compared to non-users or H2RA users.These findings emphasize the need for cautious use of PPIs in cancer patients and suggest that alternative treatments should be considered when clinically feasible.However,further studies are needed to corroborate our findings,given the significant adverse outcomes in cancer patients.
文摘In this study,the wave motion in elastodynamics for unbounded media is modeled using an unsplit-field perfectly matched layer(PML)formulation that is solved by employing an isogeometric analysis(IGA).In the adopted combination,the non-uniform rational B-spline(NURBS)functions are employed as basis functions.Moreover,the unbounded and artificial domains,defined in the PML method,are contained in a single patch domain.Based on the proposed scheme,the approximation of the geometry problem is set in a new scheme in which the PML’s absorbing and attenuation properties and the description of traveling waves can be represented.This includes a higher continuity and smoother approximation of the computed domain.As high-order NURBS basis functions are non-interpolatory,a penalty method is present to apply a time-dependent displacement load.The performance of the NURBS-based PML is analyzed through numerical examples for 1D and 2D domains,considering homogeneous and heterogeneous media.Further,we verify the long-time numerical stability of the present method.The developed method can be used to simulate hypothetical stratified domains commonly encountered in soil-structure interaction analyses.
基金supported by the German Federal Ministry of Education and Research(BMBF)through their award of the K?te Hamburger Kolleg‘Cultures of Research’Senior Research Fellowship to Bart Penders
文摘Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,we compare these moral reorientation processes to contextualize two different moral programmes of the scientific reform movement and their sociopolitical conditions.We argue that such an explication of moral programmes is vital to build legitimacy and reflect on value-prioritization.While epistemic programmes are foregrounded,moral programmes also play a crucial role in shaping science,and different moral programmes offer different promises for the sustained support of credible,reliable,fair and equitable science.We discuss the virtue and equity programmes,and through interrogating both programmes in relation to the Reformation,we display the relevance of sociopolitical contexts to how key values operate in science and generate orders of worth.These insights aim to stimulate debate about the conditions for opting for either of these moral programmes.In our view,not all moral programmes offer equal promise for the sustained support of credible,equitable and fair science.
基金by the Deutsche Forschungsgemeinschaft(DFG)through projects 420149269,394480829as part of the CRC1394“Structural and Chemical Atomic Complexity-From Defect Phase Diagrams to Material Properties”(project 409476157).
文摘Dynamic recrystallization(DRX)in inhomogeneous deformation zones,such as grain boundaries,shear bands,and deformation bands,is critical for texture modification in magnesium alloys during deformation at elevated temperatures.This study investigates the DRX mechanisms in AZWX3100 magnesium alloy under plane strain compression at 200℃.Microstructural analysis revealed necklace-type DRX accompanied by evidence of local grain boundary bulging.Additionally,ribbons of recrystallized grains were observed withinfine deformation bands,aligned with theoretical pyramidal I and II slip traces derived from the matrix.The distribution of local misorientation within the deformed microstructure demonstrated a clear association between deformation bands and localized strain.Dislocation analysis of lamellar specimens extracted from two pyramidal slip bands revealed<c+a>dislocations,indicating a connection between<c+a>slip activation and the formation of deformation bands.Crystal plasticity simulations suggest that the orientation of deformation bands is responsible for the unique recrystallization texture of the DRX grains within these bands.The texture characteristics imply a progressive,glide-induced DRX mechanism.A fundamental understanding of the role of deformation bands in texture modification can facilitate future alloy and process design.
基金funded by the German Federal Office of Civil Protection and Disaster Assistance as part of the Tele SAN project (FKZ:41201/425)。
文摘BACKGROUND:As disasters intensify and professional deficits persist,civil protection is reliant on medical volunteers.With limited physician availability,telemedicine is promising.No system currently empowers lower-qualified paramedics for physician-delegated telemedicine.Existing telemedicine technology unfits for civil protection.This study aimed to evaluate a modified system at a music festival to simulate disaster situations.METHODS:A tablet-based telemedicine system,integrating vital sign monitoring,was deployed at the "Summerjam" music festival characterized by various medical emergencies.A physician could be contacted via telemedicine or requested onsite.Medical feasibility was rated by patient condition changes,with National Advisory Committee of Aeronautics(NACA) score and Primary Ranking for Initial Orientation in the Rescue service(PRIOR) algorithm for triaging.Technical feasibility was assessed by connection stability,communication,and vital sign transmission.RESULTS:Of 404 treatments,34(8.4%) were performed using telemedicine,49(12.1%) were carried out with a physician onsite.Telemedicine treatments accounted for 40.9% of all treatment in which a physician was involved.Patient conditions varied up to NACA III(moderate disturbance).A variety of internal medical(76.5%) and surgical(23.5%) conditions were addressed,some of which required invasive measures or application of medication.No patients experienced a deterioration in their condition.Despite technical difficulties,treatment was not significantly impacted,confirming technical feasibility.CONCLUSION:The study shows that lower-qualified paramedics can effectively use telemedicine for physician-delegated treatment,suggesting potential applicability to civil protection.Nonetheless,further system robustness improvements and research are needed.
基金supported by the Volkswagen Foundation(Grant No.Az 99078 to DDC,ALT,and MT)funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy–2082/1–390761711(to DDC)part of the research training group GRK 2415–Mechanobiology in Epithelial 3D Tissue Constructs(project number 363055819,to ALT and SJ).
文摘The global demand for in vitro respiratory airway models has surged due to the coronavirus disease 2019(COVID-19)pandemic.Current state-of-the-art models use polymer membranes to separate epithelial cells from other cell types,creating a nonphysiological barrier.In this study,we applied three-dimensional(3D)printing and bioprinting to develop an in vitro model where endothelial and epithelial cells were in direct contact,mimicking their natural arrangement.This proof-ofconcept model includes a culture chamber,with an endothelial bioink printed and perfused through an epithelial channel.In silico simulations of the air velocity within the channel revealed shear stress values ranging from 0.13 to 0.39 Pa,aligning with the desired in vivo shear stress observed in the bronchi regions(0.1–0.4 Pa).Biomechanical movements during resting breathing were mimicked by incorporating a textile mesh positioned away from the cell–cell interface.The epithelial channel demonstrated a capacity for compression and expansion of up to−14.7%and+6.4%,respectively.Microscopic images showed that the epithelial cells formed a uniform monolayer within the lumen of the channel close to the bioprinted endothelial cells.Our novel model offers a valuable tool for future research into respiratory diseases and potential treatments under conditions closely mimicking those in the lung.
基金supported by the National Natural Science Foundation of China(No.42107168).
文摘Aiming at challenges posed by rock freezethaw(FT)in cold regions rock mass engineering,it is of great significance to analyze its macro-and micromechanical properties and damage laws for the smooth progress of construction.In this study,indoor freezethaw cycle(FTC)tests on sandstone were conducted to analyze the mass change rate,density change rate,longitudinal wave velocity change rate,microstructure change and mechanical properties of sandstone after FTC.A microscopic FT damage variable reflecting the FT damage was defined based on the changes of rock porosity before and after the FTC,enabling the derivation of the total damage variable under the coupled action of FTC and mechanical loading.A damage evolution equation and a microscopic damage constitutive model for rock under coupled FTC and confining pressure were established by using Lemaitre’s strain equivalence principle,the theory of continuous damage mechanics,and the assumption that the failure of rock micro-units follows the SMP criterion.The rationality and accuracy of the model were verified using triaxial compression test data for FT-damaged rock.The results show that both macroand micro-mechanical properties of sandstone are degraded under the action of FTC,resulting in significant damage.The developed microscopic damage constitutive model can reflect the stress-strain characteristics of the whole process of FT rock triaxial compression,with excellent agreement observed between experimental and theoretical curves.This validates the reliability of the model and the methodology for determining its parameters.Additionally,defining the microscopic FT damage variable based on rock porosity changes is demonstrated to be a feasible and highly accurate approach to reflect rock FT damage degree.This model expands the damage model for rock under the coupling effect of FTC and confining pressure,further illuminating the damage mechanism and failure law in such environments.The findings provide references for the construction of rock mass engineering in cold regions.
文摘A recent meta-analysis has suggested a 5-HTR1A promoter variant may predict antidepressant response.The present review comments on the claims made in view of sensitivity issues and issues pertaining to genetic exposure.We also alert to errors in the original data that had been carried over.Specifically,primers meant to amplify the HTR1A gene aligned to the BDNF gene sequence.Alleles had been confounded owing to DNA strand ambiguities and demographic information proved inaccurate.In the light of these findings,adherence to PRISMA guidelines and use of the Newcastle-Ottawa Scale did not safeguard against bias.More after action reviews are encouraged to identify factors likely to interfere with estimates of genetic risk in large data sets.These may result from pooling of ethnic groups,the use of binary data or other formats that are not human-readable,the introduction of surrogate identifiers and a failure to reverseengineer previously published experimental protocols.Unless the above challenges are met,sequence variants are unlikely to inform personalized medicine strategies in psychiatry.
基金Z.X.and T.A.S.acknowledge the financial support by the German Research Foundation(DFG)(Grant Nr.505716422)T.A.S.are grateful for the financial support from the DFG(Grant Nr.AL1343/7-1,AL1343/8-1 and Yi 103/3-1)+4 种基金Z.X.,S.K.K.and U.K.acknowledge financial support by the DFG through the projects A05,A07 and C02 of the SFB1394 StructuralChemical Atomic Complexity-From Defect Phase Diagrams to Material Properties,project ID 409476157Additionally,Z.X.and S.K.K.are grateful for funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement No.852096 FunBlocks)J.G.acknowledges funding from the French National Research Agency(ANR),Grant ANR-21-CE08-0001(ATOUUM)and ANR-22-CE92-0058-01(SILA)The authors gratefully acknowledge the computing time provided to them at the NHR Center NHR4CES at RWTH Aachen University(project number p0020431 and p0020267)。
文摘Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB segregation at highly symmetric GBs in Mg alloys,often failing to capture the diversity of local atomic environments and segregation energies,resulting in inaccurate structure-property predictions.This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures.The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors.We found that segregation energy and vibrational free energy follow skew-normal distributions,with hydrostatic stress,an indicator of excess free volume,emerging as an important factor influencing segregation tendency.The local atomic environment's flexibility,quantified by flexibility volume,is also crucial in predicting GB segregation.Comparing the grain boundary solute concentrations calculated via the Langmuir-Mc Lean isotherm with experimental data,we identified a pronounced segregation tendency for Nd,highlighting its potential for GB engineering in Mg alloys.This work demonstrates the powerful synergy of atomistic simulations and machine learning,paving the way for designing advanced lightweight Mg alloys with tailored properties.
基金supported by the National Key R&D Program of China(No.2021YFA1200201)the Beijing Outstanding Young Scientists Projects(No.BJJWZYJH01201910005018)+1 种基金The Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(No.51988101)the National Natural Science Foundation of China(Nos.52071003 and 91860202)。
文摘The photocatalytic reduction of CO_(2)presents a promising avenue for carbon fuel conversion.However,the efficiency of charge utilization remains a critical barrier to industrial applications.In this study,we introduce a tandem design of Bi_(2)WO_(6)-BiOCl with an atomically matched interface,achieving highly efficient photoreduction of CO_(2)to CO.By incorporating WO_(4)^(2-)ions and tuning coordination environment,the(110)facet of BiOCl was in-situ grown on the(200)facet of Bi_(2)WO_(6).Compared to single phases and ball-milling samples,Bi_(2)WO_(6)-BiOCl exhibits a remarkable CO yield of 68.03μmol g^(-1)h^(-1)with a selectivity of 98%.Atomic visualization and coordination analysis confirm the formation of a coherent interface that facilitates charge migration for efficient electron transport.Density functional theory(DFT)calculations and in-situ Fourier transform infrared(FTIR)spectroscopy provide insights into the intrinsic active sites and reaction mechanisms.The proposed lattice engineering strategies offer a new paradigm for the rational design of heterostructures beyond traditional band alignment at the atomic scale.