One in every eight men in the US is diagnosed with prostate cancer,making it the most common cancer in men.Gleason grading is one of the most essential diagnostic and prognostic factors for planning the treatment of p...One in every eight men in the US is diagnosed with prostate cancer,making it the most common cancer in men.Gleason grading is one of the most essential diagnostic and prognostic factors for planning the treatment of prostate cancer patients.Traditionally,urological pathologists perform the grading by scoring the morphological pattern,known as the Gleason pattern,in histopathology images.However,thismanual grading is highly subjective,suffers intra-and inter-pathologist variability and lacks reproducibility.An automated grading system could be more efficient,with no subjectivity and higher accuracy and reproducibility.Automated methods presented previously failed to achieve sufficient accuracy,lacked reproducibility and depended on high-resolution images such as 40×.This paper proposes an automated Gleason grading method,ProGENET,to accurately predict the grade using low-resolution images such as 10×.This method first divides the patient’s histopathology whole slide image(WSI)into patches.Then,it detects artifacts and tissue-less regions and predicts the patch-wise grade using an ensemble network of CNN and transformer models.The proposed method adapted the International Society of Urological Pathology(ISUP)grading system and achieved 90.8%accuracy in classifying the patches into healthy and Gleason grades 1 through 5 using 10×WSI,outperforming the state-of-the-art accuracy by 27%.Finally,the patient’s grade was determined by combining the patch-wise results.The method was also demonstrated for 4−class grading and binary classification of prostate cancer,achieving 93.0%and 99.6%accuracy,respectively.The reproducibility was over 90%.Since the proposedmethod determined the grades with higher accuracy and reproducibility using low-resolution images,it is more reliable and effective than existing methods and can potentially improve subsequent therapy decisions.展开更多
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R104),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘One in every eight men in the US is diagnosed with prostate cancer,making it the most common cancer in men.Gleason grading is one of the most essential diagnostic and prognostic factors for planning the treatment of prostate cancer patients.Traditionally,urological pathologists perform the grading by scoring the morphological pattern,known as the Gleason pattern,in histopathology images.However,thismanual grading is highly subjective,suffers intra-and inter-pathologist variability and lacks reproducibility.An automated grading system could be more efficient,with no subjectivity and higher accuracy and reproducibility.Automated methods presented previously failed to achieve sufficient accuracy,lacked reproducibility and depended on high-resolution images such as 40×.This paper proposes an automated Gleason grading method,ProGENET,to accurately predict the grade using low-resolution images such as 10×.This method first divides the patient’s histopathology whole slide image(WSI)into patches.Then,it detects artifacts and tissue-less regions and predicts the patch-wise grade using an ensemble network of CNN and transformer models.The proposed method adapted the International Society of Urological Pathology(ISUP)grading system and achieved 90.8%accuracy in classifying the patches into healthy and Gleason grades 1 through 5 using 10×WSI,outperforming the state-of-the-art accuracy by 27%.Finally,the patient’s grade was determined by combining the patch-wise results.The method was also demonstrated for 4−class grading and binary classification of prostate cancer,achieving 93.0%and 99.6%accuracy,respectively.The reproducibility was over 90%.Since the proposedmethod determined the grades with higher accuracy and reproducibility using low-resolution images,it is more reliable and effective than existing methods and can potentially improve subsequent therapy decisions.