Zero thermal expansion(ZTE)alloys have unique aspects in the application of the engineering of precise dimensional control.However,the harsh conditions to realize ZTE,i.e.,appropriate coupling among spin,lattice,and c...Zero thermal expansion(ZTE)alloys have unique aspects in the application of the engineering of precise dimensional control.However,the harsh conditions to realize ZTE,i.e.,appropriate coupling among spin,lattice,and charge upon heating,have limited the ZTE alloys by very few numbers of species.In this work,we report a route to achieving twodimensional(2D)ZTE behavior by regulating crystallographic texture and magneto-volume effects(MVEs)in volumetric positive thermal expansion alloys.This is illustrated in a series of Mn_(x)Fe_(5-x)Si_(3)compounds by those earth-abundant elements.As a result,a 2D ZTE performance with a coefficient of thermal expansion α_(1)=0.45×10^(-7)K^(-1) over a broad temperature window of 10–310 K was observed in MnFe4Si3.The experimental results by synchrotron X-ray diffraction,neutron diffraction,microscopy,and magnetization measurements reveal that such a ZTE behavior is strongly coupled with fiber crystallographic texture and magnetic moment at the crystallographic 6g site that dominates MVEs in the a-b plane.The competition between ferromagnetic Fe_(4d)–Fe_(6g)(J_(FM))and antiferromagnetic Mn_(4d)–Mn_(6g)(J_(AFM))interactions makes the Mn_(1.5)Fe_(3.5)Si_(3) and Mn_(2)Fe_(3)Si_(3)compounds show mixed magnetism and negative thermal expansion(NTE).The integral approach presented here can be used to extend the scope of ZTE/NTE species in other magnetic or ferroelectric materials.展开更多
基金supported by the National Key R&D Program of China(2020YFA0406202)the National Natural Science Foundation of China(22090042,21971009 and 21731001)+1 种基金the Fundamental Research Funds for the Central Universities,China(FRF-IDRY-19-018 and FRF-BR-19-003B)Neutron texture analysis was carried out at the Spallation Neutron Source(SNS)(Proposal No.2020B26069)。
文摘Zero thermal expansion(ZTE)alloys have unique aspects in the application of the engineering of precise dimensional control.However,the harsh conditions to realize ZTE,i.e.,appropriate coupling among spin,lattice,and charge upon heating,have limited the ZTE alloys by very few numbers of species.In this work,we report a route to achieving twodimensional(2D)ZTE behavior by regulating crystallographic texture and magneto-volume effects(MVEs)in volumetric positive thermal expansion alloys.This is illustrated in a series of Mn_(x)Fe_(5-x)Si_(3)compounds by those earth-abundant elements.As a result,a 2D ZTE performance with a coefficient of thermal expansion α_(1)=0.45×10^(-7)K^(-1) over a broad temperature window of 10–310 K was observed in MnFe4Si3.The experimental results by synchrotron X-ray diffraction,neutron diffraction,microscopy,and magnetization measurements reveal that such a ZTE behavior is strongly coupled with fiber crystallographic texture and magnetic moment at the crystallographic 6g site that dominates MVEs in the a-b plane.The competition between ferromagnetic Fe_(4d)–Fe_(6g)(J_(FM))and antiferromagnetic Mn_(4d)–Mn_(6g)(J_(AFM))interactions makes the Mn_(1.5)Fe_(3.5)Si_(3) and Mn_(2)Fe_(3)Si_(3)compounds show mixed magnetism and negative thermal expansion(NTE).The integral approach presented here can be used to extend the scope of ZTE/NTE species in other magnetic or ferroelectric materials.