As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expo...As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.展开更多
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount...In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.展开更多
Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.Howe...Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.However,with the development of complex application scenarios such as the Internet of Things(IoT)and Smart Earth,the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.Therefore,joint resource optimization may be the key solution to the scaling problem.This paper simultaneously addresses the multifaceted challenges of computation and communication,with the growing multiple resource demands.We systematically review the joint allocation strategies for different resources(computation,data,communication,and network topology)in FEL,and summarize the advantages in improving system efficiency,reducing latency,enhancing resource utilization,and enhancing robustness.In addition,we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements,indirectly.This work not only provides theoretical support for resource management in federated learning(FL)systems,but also provides ideas for potential optimal deployment in multiple real-world scenarios.By thoroughly discussing the current challenges and future research directions,it also provides some important insights into multi-resource optimization in complex application environments.展开更多
This paper discusses SHVC, the scalable extension of the High Efficiency Video Coding (HEVC) standard, and its applications in broadcasting and wireless broadband multimedia services. SHVC was published as part of the...This paper discusses SHVC, the scalable extension of the High Efficiency Video Coding (HEVC) standard, and its applications in broadcasting and wireless broadband multimedia services. SHVC was published as part of the second version of the HEVC specifi?cation in 2014. Since its publication, SHVC has been evaluated by application standards development organizations (SDOs) for its potential benefits in video applications, such as terrestrial and mobile broadcasting in ATSC 3.0, as well as a variety of 3GPP mul?timedia services, including multi?party multi?stream video conferencing (MMVC), multimedia broadcast/multicast service (MBMS), and dynamic adaptive streaming over HTTP (DASH). This paper provides a brief overview of SHVC and the performance and com?plexity analyses of using SHVC in these video applications.展开更多
Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to t...Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme.展开更多
The spatial diffusion of information is a process governed by the flow of interpersonal communication.The emergence of the Internet and especially social media platforms has reshaped this process and previous research...The spatial diffusion of information is a process governed by the flow of interpersonal communication.The emergence of the Internet and especially social media platforms has reshaped this process and previous research has studied how online social networks contribute to the diffusion of information.Understanding such processes can help devise methods to maximize or control the reach of information or even identify upcoming events and social movements.Yet activities in cyberspace are still confined to physical locations and this geographic connection tends to be overlooked.In this research,we focus on geographic regions instead of individuals and study how the underlying hierarchical structure of regions relates to their response to the information.We examined the top 30 populated cities and metropolitan areas in the U.S.and retrieved Twitter data related to two selected topics from these regions,the 2015 Nepal Earthquake and the#JesuisCharlie hashtag in response to the Paris attacks on the Charlie Hebdo offices.We analyzed the similarity among regions of their response using multiple statistical methods and three urban classifications.Our results indicate that the diffusion of information is impacted by the hierarchy of urban regions and that the Twitter responses act more similar when the populated regions are positioned at the same level in the urban hierarchy.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 project under Grant No.B23008.
文摘As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008).
文摘In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 Project under Grant No.B23008.
文摘Federated Edge Learning(FEL),an emerging distributed Machine Learning(ML)paradigm,enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data.However,with the development of complex application scenarios such as the Internet of Things(IoT)and Smart Earth,the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.Therefore,joint resource optimization may be the key solution to the scaling problem.This paper simultaneously addresses the multifaceted challenges of computation and communication,with the growing multiple resource demands.We systematically review the joint allocation strategies for different resources(computation,data,communication,and network topology)in FEL,and summarize the advantages in improving system efficiency,reducing latency,enhancing resource utilization,and enhancing robustness.In addition,we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements,indirectly.This work not only provides theoretical support for resource management in federated learning(FL)systems,but also provides ideas for potential optimal deployment in multiple real-world scenarios.By thoroughly discussing the current challenges and future research directions,it also provides some important insights into multi-resource optimization in complex application environments.
文摘This paper discusses SHVC, the scalable extension of the High Efficiency Video Coding (HEVC) standard, and its applications in broadcasting and wireless broadband multimedia services. SHVC was published as part of the second version of the HEVC specifi?cation in 2014. Since its publication, SHVC has been evaluated by application standards development organizations (SDOs) for its potential benefits in video applications, such as terrestrial and mobile broadcasting in ATSC 3.0, as well as a variety of 3GPP mul?timedia services, including multi?party multi?stream video conferencing (MMVC), multimedia broadcast/multicast service (MBMS), and dynamic adaptive streaming over HTTP (DASH). This paper provides a brief overview of SHVC and the performance and com?plexity analyses of using SHVC in these video applications.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the open research fund of State Key Laboratory of Integrated Services Networks(No.ISN23-11)+3 种基金in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008)in part by the Future Network Scientific Research Fund Project(FNSRFP2021-YB-11)in part by the project of Changzhou Key Laboratory of 5G+Industrial Internet Fusion Application(No.CM20223015)。
文摘Federated edge learning(FEEL)technology for vehicular networks is considered as a promising technology to reduce the computation workload while keeping the privacy of users.In the FEEL system,vehicles upload data to the edge servers,which train the vehicles’data to update local models and then return the result to vehicles to avoid sharing the original data.However,the cache queue in the edge is limited and the channel between edge server and each vehicle is time-varying.Thus,it is challenging to select a suitable number of vehicles to ensure that the uploaded data can keep a stable cache queue in edge server while maximizing the learning accuracy.Moreover,selecting vehicles with different resource statuses to update data will affect the total amount of data involved in training,which further affects the model accuracy.In this paper,we propose a vehicle selection scheme,which maximizes the learning accuracy while ensuring the stability of the cache queue,where the statuses of all the vehicles in the coverage of edge server are taken into account.The performance of this scheme is evaluated through simulation experiments,which indicates that our proposed scheme can perform better than the known benchmark scheme.
文摘The spatial diffusion of information is a process governed by the flow of interpersonal communication.The emergence of the Internet and especially social media platforms has reshaped this process and previous research has studied how online social networks contribute to the diffusion of information.Understanding such processes can help devise methods to maximize or control the reach of information or even identify upcoming events and social movements.Yet activities in cyberspace are still confined to physical locations and this geographic connection tends to be overlooked.In this research,we focus on geographic regions instead of individuals and study how the underlying hierarchical structure of regions relates to their response to the information.We examined the top 30 populated cities and metropolitan areas in the U.S.and retrieved Twitter data related to two selected topics from these regions,the 2015 Nepal Earthquake and the#JesuisCharlie hashtag in response to the Paris attacks on the Charlie Hebdo offices.We analyzed the similarity among regions of their response using multiple statistical methods and three urban classifications.Our results indicate that the diffusion of information is impacted by the hierarchy of urban regions and that the Twitter responses act more similar when the populated regions are positioned at the same level in the urban hierarchy.