期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impact of Drought, Salinity, and Waterlogging on Wheat: Physiological, Biochemical Responses, and Yield Implications
1
作者 Mudasser Mehmood Zoahaib Aslam Khan +5 位作者 Adil Mehmood Madiha Zaynab Muhammad Atiq ur Rahman Mohammad Khalid Al-Sadoon M.Harshini Ling Shing Wong 《Phyton-International Journal of Experimental Botany》 2025年第4期1111-1135,共25页
Wheat(Triticum aestivum L.)is a staple crop critical for global food security,yet its productivity is significantly affected by abiotic stresses such as drought,salinity,and waterlogging,which are exacerbated by clima... Wheat(Triticum aestivum L.)is a staple crop critical for global food security,yet its productivity is significantly affected by abiotic stresses such as drought,salinity,and waterlogging,which are exacerbated by climate change.This study evaluated the effects of these stresses on vegetative growth,physiological responses,and yield.Field experiments were conducted using a Randomized Complete Block Design(RCBD)at the Mona Reclamation Experimental Project(MREP),WAPDA,Bhalwal,Sargodha,Punjab Pakistan.Stress treatments included three levels of drought(25%,50%,and 75%field capacity),salinity(4,8,and 12 dS/m),and waterlogging(24,48,and 72 h).Key parameters measured included plant height,leaf area,tiller number,stomatal conductance,chlorophyll content,and antioxidant enzyme activities.The results revealed that drought stress caused a 46%reduction in yield,while salinity and waterlogging reduced yield by 54%and 35%,respectively,with statistically significant differences(p 0.05).Key<physiological changes included a significant reduction in stomatal conductance(from 0.55 to 0.15 mmol m^(2)/s under drought stress,p 0.01)and chlorophyll content(from 48 to 28 SPAD units under drought,p 0.01).Biochemical<<responses indicated elevated levels of malondialdehyde(MDA)and hydrogen peroxide(H2O2),with significant increases in antioxidant enzyme activities,particularly superoxide dismutase(SOD)and catalase(CAT).These findings underscore the need for developing stress-tolerant wheat varieties and implementing agronomic practices to mitigate the impact of abiotic stresses on wheat yield. 展开更多
关键词 Abiotic stress antioxidant enzymes DROUGHT SALINITY wheat cultivation
在线阅读 下载PDF
Influence of P-enriched compost application on economics and P use efficiency of a maize–wheat rotation system 被引量:3
2
作者 Abdul Majeed Shahzada Munawar Mehdi +5 位作者 Abid Niaz Abid Mahmood Ehsan-Ul-Haq Naeem Ahmad Shahid Javid Atif Mehmood 《The Crop Journal》 SCIE CAS CSCD 2018年第6期651-658,共8页
Crop phosphorus(P) deficiency and poor utilization of added P is a major agricultural problem due to reduced solubility of soil P and rapid fixation or precipitation of applied P fertilizer in alkaline and calcareous ... Crop phosphorus(P) deficiency and poor utilization of added P is a major agricultural problem due to reduced solubility of soil P and rapid fixation or precipitation of applied P fertilizer in alkaline and calcareous soils. The effects of P-enriched compost and single superphosphate(SSP) fertilization on maize and wheat yields and P use efficiency in a maize–wheat rotation system were studied for three years. On a three-year average, grain yields of maize and wheat after application of P-enriched compost were increased by 18% and 24%, respectively, in comparison with sole addition of a recommended dose of SSP fertilizer. P-enriched compost addition to soil increased maize and wheat yields by 12% and 17%, respectively, compared to P fertilizer plus FYM incorporation. Soil available P concentration and P uptake were affected significantly by the addition of P-enriched compost. On average, increases in P recovery, use efficiency, and agronomic efficiency of 52%, 18%, and 43% were recorded in maize and increases of 50%, 23%, and 49% in wheat. P-enriched compost application yielded 30% and 32%higher economic returns in maize and wheat than SSP fertilization alone. 展开更多
关键词 P-enriched COMPOST MAIZE WHEAT Farmyard MANURE P-uptake
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部