Ensuring stable integration of diverse soft electronic components for reliable operation under dynamic conditions is crucial.However,integrating soft electronics,comprising various materials like polymers,metals,and h...Ensuring stable integration of diverse soft electronic components for reliable operation under dynamic conditions is crucial.However,integrating soft electronics,comprising various materials like polymers,metals,and hydrogels,poses challenges due to their different mechanical and chemical properties.This study introduces a dried-hydrogel adhesive made of poly(vinyl alcohol)and tannic acid multilayers(d-HAPT),which integrates soft electronic materials through moisture-derived chain entanglement.d-HAPT is a thin(~1μm)and highly transparent(over 85%transmittance in the visible light region)adhesive,showing robust bonding(up to 3.6 MPa)within a short time(<1 min).d-HAPT demonstrates practical application in wearable devices,including a hydrogel touch panel and strain sensors.Additionally,the potential of d-HAPT for use in implantable electronics is demonstrated through in vivo neuromodulation and electrocardiographic recording experiments while confirming its biocompatibility both in vitro and in vivo.It is expected that d-HAPT will provide a reliable platform for integrating soft electronic applications.展开更多
With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,wel...With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices.展开更多
基金supported by Nano·Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(NRF-2021M3H4A1A04092883)supported by the Korea Medical Device Development Fund grant funded by theKorea government(the Ministry of Science and ICT,theMinistry of Trade,Industry and Energy,the Ministry of Health&Welfare,the Ministry of Food and Drug Safety)(Project Number:1711196794,RS-2023-00243310)。
文摘Ensuring stable integration of diverse soft electronic components for reliable operation under dynamic conditions is crucial.However,integrating soft electronics,comprising various materials like polymers,metals,and hydrogels,poses challenges due to their different mechanical and chemical properties.This study introduces a dried-hydrogel adhesive made of poly(vinyl alcohol)and tannic acid multilayers(d-HAPT),which integrates soft electronic materials through moisture-derived chain entanglement.d-HAPT is a thin(~1μm)and highly transparent(over 85%transmittance in the visible light region)adhesive,showing robust bonding(up to 3.6 MPa)within a short time(<1 min).d-HAPT demonstrates practical application in wearable devices,including a hydrogel touch panel and strain sensors.Additionally,the potential of d-HAPT for use in implantable electronics is demonstrated through in vivo neuromodulation and electrocardiographic recording experiments while confirming its biocompatibility both in vitro and in vivo.It is expected that d-HAPT will provide a reliable platform for integrating soft electronic applications.
基金supported by National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2021M3F3A2A01037365,RS-2023-00207970)KAINEET Institute Seed Money Project,Post-AI Research Institute.
文摘With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices.